Numerical assessment of solar air heater performance having a broken arc and broken S-shaped ribs as roughness

Author:

Haldiaa Shivam1,Bishta Vijay Singh1,Bhandarib Prabhakar2,Ranakotic Lalit3,Negic Akashdeep3

Affiliation:

1. Department of Thermal Engineering, Faculty of Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand-248007, India

2. Department of Mechanical Engineering, School of Engineering and Technology, K. R. Mangalam University, Gurgaon, Haryana-122103, India

3. Department of Mechanical Engineering, Graphic Era Deemed to University, Clement Town, Dehradun, Uttarakhand-248002, India

Abstract

This research article aims to provide a detailed numerical study of the multifaceted impact of S-shaped and broken arc roughness on solar air heaters. Therefore, a strong comparison was made between the modified heaters and smooth heaters for Reynolds numbers ranging from 2 00022 000. Also, the impact of two parameters, i.e. pitch and gap was analyzed to optimize the performance of the heater. The gap varies from 0.3 mm to 0.9 mm in both types of ribs with a step size of 0.2 mm. Afterwards, the pitch distance between both types of roughness was varied from 15 mm to 25 mm in the step size of 5 mm. Notably, it has been observed that among all the considered configurations, the gap length of 0.9 mm and pitch length of 25 mm have shown significant improvements in heat transfer characteristics. The specific combination of the gap of 0.9 mm and pitch of 25 mm has demonstrated better heat transfer capabilities at the expense of an increased friction factor. Lastly, the thermal performance factor of the systems was analyzed and reported. It was reported that the pitch length of 25 mm and gap length of 0.9 mm have shown a maximum thermal performance factor value from 2.9 to 3.3, while the pitch length of 25 mm and gap length of 0.3 mm have depicted the lowest thermal performance factor value. In terms of the overall performance, i.e. the thermal performance factor, the combination with a gap of 0.9 mm and pitch of 25 mm has shown the best performance, while a gap of 0.3 mm and pitch of 25 mm has yielded the worst performance.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3