A model of the steam compression process in a piston reactor

Author:

Joachimiak Damian1,Borowczyk Tomasz2,Joachimiak Magda1

Affiliation:

1. Poznan University of Technology, Institute of Thermal Engineering, Piotrowo 3a, 60-965, Poznan, Poland

2. Grupa inżynieryjna Konstrubowski Sp. z o.o., Święty Wojciech 7/13, 61-749 Poznań, Poland

Abstract

The paper discusses the possible determination of steam parameters in a new type of piston machine for steam compression to generate supercritical water parameters. It presents a calculation model that allows one to simulate the process of steam compression in a cylinder with volume regulated by the piston position. In each calculation step, the steam parameters were determined on the basis of fast adiabatic changes which were corrected by the effect of leakage and heat transfer occurrence. The seal of the reactor was assumed to be a compression ring. Depending on the pressure drop on the seal, subcritical and supercritical flow was taken into account. The leak was corrected by the coefficient of flow contraction. Heat transfer was determined by equations for the Nusselt number for water and steam from the homogenous area. The programmed model allows one to simulate changes in the thermodynamic parameters of steam during the process of steam compression with any calculation step. The results presented in this paper show that the application of one compression ring allows us to obtain supercritical steam parameters. Various degrees of sealing leak tightness and their impact on the changeability of steam parameters were analyzed. Heat transfer was shown to have an impact not only on changes in steam temperature, but also on pressure. This paper analyzes the impact of the temperature of the walls of the compression chamber on the value and direction of heat transfer.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3