Implementation of solidified carbon dioxide to anaerobic co-digestion of municipal sewage sludge and orange peel waste

Author:

Szaja Aleksandra1ORCID,Bartkowska Izabela2

Affiliation:

1. Lublin University of Technology, Faculty of Environmental Engineering, Lublin, Poland

2. Bialystok University of Technology, Department of Water Supply and Sewage Systems,Faculty of Civil Engineering and Environmental Sciences, Poland

Abstract

The waste production is closely related with human activity. Various approaches have been applied to manage and reduce its increasing volume (Paranjpe et al. 2023). One of the possibilities that comply with the assumptions of circular economy is utilization of wastes in anaerobic digestion (AD) process. This technology is common worldwide and it is recognized as the cost-effective methods of energy generation that also allow for nutrient recovery, as well as effective waste management (Alharbi et al. 2023). The biogas generated within this process is considered as a multifunctional renewable source that might be a promising alternative to the depleting traditional fuels. It finds various applications such as heat and power generation, fuel in automobiles, and substrate in chemical industry (Shitophyta et al. 2022, Pradeshwaran 2024). Typically, biogas contains 50–70% of CH4, 30–50% of CO2, and 1–10% of other trace gases like H2, H2S, CO, N2. Its composition mainly depends on the feedstock characteristics, operational conditions, and adopted technology (Gani et al. 2023, Archana et al. 2024). Considering further application, the priority action should be increasing its volume and methane content. There are several strategies to achieve these goals, including implementing codigestion strategy, adding additional component to the main substrate, introducing trace elements essential in AD, pretreatment strategies, and introducing enzymes and microbial strains to digesters (Zhang et al. 2019). Each method has limits related to the implementation costs, changes in the adopted technology, operator training needs, and additional energy input, which might negatively influence the energy balance of wastewater treatment plants (WWTPs) (Meng et al. 2022). Therefore, recent scientific attention has focused on combining various strategies to achieve intended goals. Moreover, such combinations might allow for an effective utilization of various wastes, the earlier use of which in AD was difficult. Orange waste could be an example of such a substrate. The previous studies indicated that its application in AD resulted in poor process efficiency, mainly due to the presence of limonene, recognized as the main inhibitor of biological activity (Calabro et al. 2020, Bouaita et al. 2022). In this study, the novel concept of implementing solidified carbon dioxide (SCO2) in the anaerobic co-digestion of municipal sewage sludge (SS) and orange peel waste (OPW) has been proposed. This approach may help overcome the disadvantages of the two-component AD of these wastes. Importantly, such studies have not been conducted thus far. However, the recent studies indicated that application of SCO2 to aerobic granular sludge improved biogas and methane yields and also enhanced the kinetics of biogas production (Kazimierowicz et al. 2023 a,b). Importantly, SCO2 might be generated in biogas upgrading technologies (Yousef 2019). Such solution is consistent with the principles of the circular economy and contributes to reducing the carbon footprint of WWTPs.

Publisher

Polish Academy of Sciences Chancellery

Reference1 articles.

1. Alharbi, M., Alseroury, F. & Alkthami, B. (2023). Biogas Production from Manure of Camel and Sheep Using Tomato and Rumen as Co-Substrate. Journal of Ecological Engineering, 24(11), pp. 54–61. DOI:10.12911/22998993/170984 Archana, K., Visckram, A., Senthil Kuma, P., Manikandan, S., Saravanan, A. & Natrayan, L. (2024). A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals. Fuel, 358, 130298. DOI:10.1016/j.fuel.2023.130298 Awasthi, M.K., Lukitawesa, L., Duan, Y., Taherzadeh, M.J. & Zhang, Z. (2022). Bacterial dynamics during the anaerobic digestion of toxic citrus fruit waste and semi-continues volatile fatty acids production in membrane bioreactors. Fuel, 319, 123812. DOI:10.1016/j.fuel.2022.123812 Bouaita, R., Derbal, K., Panico, A., Iasimone, F., Pontoni, L., Fabbricino, M. & Pirozzi, F. (2022). Methane production from anaerobic co-digestion of orange peel waste and organic fraction of municipal solid waste in batch and semi-continuous reactors. Biomass and Bioenergy, 160, Volume 160, 106421. DOI:10.1016/j.biombioe.2022.106421 Calabrò, P.S., Fazzino, F., Sidari, R. & Zema, D.A. (2020). Optimization of orange peel waste ensiling for sustainable anaerobic digestion. Renewable Energy, 154, pp. 849–862. DOI:10.1016/j.renene.2020.03.047 Fisher, K. & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends in Food Science & Technology, 19, pp. 156–164. DOI:10.1016/j.renene.2020.03.047 Gani, A., Mamat, R., Sudhakar, K., Rosdi, S.M., & Husin, H. (2023). Biomass and wind energy as sources of renewable energy for a more sustainable environment in Indonesia: A review. Archives of Environmental Protection, pp. 57–69. DOI: 10.24425/aep.2022.142690 González-Mas, M.C., Rambla, J.L., López-Gresa, M.P., Blázquez, M.A. & Granell, A. (2019). Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Frontiers in Plant Science, 10, 12. DOI: 10.3389/fpls.2019.00012. Grübel, K. & Machnicka, A. (2020) The Use of Hybrid Disintegration of Activated Sludge to Improve Anaerobic Stabilization Process. Ecological Engineering & Environmental Technology, 21, pp. 1–8. DOI:10.12912/23920629/119104. Hakimi, M., Manogaran, M., Shamsuddin, R.B., Mohd Johari, S.A., Abdalla, M., Hassan, M. & Soehartanto, T. (2023). Co-anaerobic digestion of sawdust and chicken manure with plant herbs: Biogas generation and kinetic study. Heliyon, 9(6), 17096. DOI:10.1016/j.heliyon.2023.e17096. Howel, G., Bennett, C.J. & Materić, D. (2019). A comparison of methods for early prediction of anaerobic biogas potential on biologically treated municipal solid waste. Journal of Environmental Management, 232, pp. 887–894. DOI:10.1016/j.jenvman.2018.11.137. Hu, K., Jiang, J., Zhao, Q., Lee, D., Wang, K. & Qiu, W. (2011). Conditioning of wastewater sludge using freezing and thawing: role of curing. Water research, 45 18, pp. 5969–5976. DOI: 10.1016/j.watres.2011.08.064. Kazimierowicz, J., Dębowski, M. & Zieliński, M. (2023a). Long-Term Pre-Treatment of Municipal Sewage Sludge with Solidified Carbon Dioxide (SCO2)—Effect on Anaerobic Digestion Efficiency. Applied Sciences, 13, 3075. DOI:10.3390/app13053075. Kazimierowicz, J., Dębowski, M., Zieliński, M., Bartkowska, I., Wasilewski, A., Łapiński, D. & Ofman, P. (2023b). The Use of Solidified Carbon Dioxide in the Aerobic Granular Sludge Pre-Treatment before Thermophilic Anaerobic Digestion. Applied Sciences, 13, 7864. DOI: 10.3390/app13137864. Meng, Y., Li, Y., Chen, L. & Han, R. (2022). Application of response surface methodology to improve methane production from jerusalem artichoke straw. Archives of Environmental Protection, 48, pp. 70–79. DOI: 10.24425/aep.2022.142691. Millati, R., Wikandari, R., Ariyanto, T., Putri, R.U. & Taherzadeh, M.J. (2020). Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks. Bioresource Technology, 122998. DOI:10.1016/j.biortech.2020.122998. Montusiewicz, A., Lebiocka, M., Rożej, A., Zacharska, E. & Pawłowski, L. (2010). Freezing/thawing effects on anaerobic digestion of mixed sewage sludge. Bioresource Technology, 101 10, pp. 3466–3473. DOI:10.1016/j.biortech.2009.12.125. Nazari, L., Yuan, Z., Santoro, D., Sarathy, S.R., Ho, D., Batstone D.J., Xu C.C. & Ray, M.B. (2017). Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation. Water research, 113, pp. 111–123. DOI: 10.1016/j.watres.2016.11.055. Paranjpe, A., Saxena, S. & Jain, P. (2023). A Review on Performance Improvement of Anaerobic Digestion Using Co-Digestion of Food Waste and Sewage Sludge. Journal of Environmental Management, 338, 117733. DOI:10.1016/j.jenvman.2023.117733. Phalakornkule, C., Nuchdang, S., Khemkhao, M., Mhuantong, W., Wongwilaiwalin, S., Tangphatsornruang, S., Champreda V., Kitsuwan, J. & Vatanyoopaisarn, S. (2017). Effect of freeze-thaw process on physical properties, microbial activities and population structures of anaerobic sludge. Journal of Bioscience and Bioengineering, 123 , pp. 474–481. DOI:10.1016/j.jbiosc.2016.11.005. Pradeshwaran, V., Chen, W., Saravanakumar, A., Suriyaprakash, R. & Selvarajoo, A. (2024). Biocatalyst enhanced biogas production from food and fruit waste through anaerobic digestion. Biocatalysis and Agricultural Biotechnology, 55, 102975. DOI:10.1016/j.bcab.2023.102975. Purandare, A., Verbruggen, W. & Vanapalli, S. (2023). Experimental and Theoretical Investigation of the Dry Ice Sublimation Temperature for Varying Far-Field Pressure and CO2 Concentration. International Communications in Heat and Mass Transfer, 148, 107042. DOI:10.1016/j.icheatmasstransfer.2023.107042 Rokaya, B., Kerroum, D., Hayat, Z., Panico, A., Ouafa, A., & Pirozzi, F. (2019). Biogas production by an anaerobic digestion process from orange peel waste and its improvement by limonene leaching: Investigation of H2O2 pre-treatment effect. Energy Sources Part A-recovery Utilization and Environmental Effects, pp. 1–9. DOI:10.1080/15567036.2019.1692975. Ruiz, B. & Flotats, X. (2014). Citrus essential oils and their influence on the anaerobic 721 digestion process: an overview. Waste Management, 34(11), pp. 2063–2079. DOI:10.1016/j.wasman.2014.06.026. Serrano, A., Siles López, J. A., Chica, A. F., Martín, M. A., Karouach, F., Mesfioui, A. & El Bari, H. (2014). Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste. Environmental Technology, 35(5-8), pp. 898–906. DOI:10.1080/09593330.2013.855822. Shitophyta, L. M., Padya, S. A., Zufar, A. F. & Rahmawati, N. (2022). The Impact of Alkali Pretreatment and Organic Solvent Pretreatment on Biogas Production from Anaerobic Digestion of Food Waste. Journal of Ecological Engineering, 23(12), pp. 179–188. DOI:10.12911/22998993/155022. Szaja, A, Golianek, P. & Kamiński, M. (2022a). Process Performance of Thermophilic Anaerobic Co-Digestion of Municipal Sewage Sludge and Orange Peel. Journal of Ecological Engineering, 23(8), pp. 66–76. DOI:10.12911/22998993/150613 Szaja, A., Montusiewicz, A., Pasieczna-Patkowska, S. & Lebiocka, M. (2022b.) Technological and Energetic Aspects of Multi-Component Co-Digestion of the Beverage Industry Wastes and Municipal Sewage Sludge. Energies, 15, 5395. DOI:10.3390/en15155395. Wu, D., Li, L., Peng, Y., Yang, P., Peng, X., Sun, Y. & Wang, X. (2021). State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis. Renewable & Sustainable Energy Reviews, 148, 111260. DOI:10.1016/J.RSER.2021.111260. Yousef, A.M., El-Maghlany, W.M., Eldrainy, Y.A. & Attia, A. (2019). Upgrading Biogas to Biomethane and Liquid CO2: A Novel Cryogenic Process. Fuel, 251, pp. 611–628. DOI:10.1016/J.FUEL.2019.03.127. Zawieja, I.E. (2019). The Course of the Methane Fermentation Process of Dry Ice Modified Excess Sludge. Archives of Environmental Protection, 45, pp. 50–58. DOI:10.24425/aep.2019.126421. Zhang, L., Loh, K.C. & Zhang, J. (2019). Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. Bioresource Technology Reports, 5, pp. 280–296. DOI:10.1016/j.biteb.2018.07.005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3