1. 1. Adewuyi AA, Gruys E, van Eerdenburg FJ (2005) Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet Q 27: 117-126. 2. Bauman DE, Currie WB (1980) Partitioning of Nutrients During Pregnancy and Lactation: A Review of Mechanisms Involving Homeo-stasis and Homeorhesis. J Dairy Sci 63: 1514-1529. 3. Bell AW (1995) Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J Anim Sci 73: 2804-2819. 4. Berckmans D (2015) Smart farming for Europe: value creation through precision livestock farming. In: Ilan Halachmi (ed) Precision Livestock Farming Applications, Wageningen Academic, brill, pp 139-147. 5. Bikker JP, van Laar H, Rump P, Doorenbos J, van Meurs K, Griffioen GM, Dijkstra J (2014) Technical note: Evaluation of an ear-attached movement sensor to record cow feeding behavior and activity. J Dairy Sci 97: 2974-2979. 6. Caixeta LS, Ospina PA, Capel MB, Nydam DV (2015) The association of subclinical hypocalcemia, negative energy balance and disease with bodyweight change during the first 30 days post-partum in dairy cows milked with automatic milking systems. Vet J 204: 150-156. 7. Constable PD, Hinchcliff KW, Done SH, Gruenberg W (2016) Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats. 11th ed.,. Elsevier Health Sciences, pp 1662-1726. 8. Contreras GA, O'Boyle NJ, Herdt TH, Sordillo LM (2010) Lipomobilization in periparturient dairy cows influences the composition of plasma nonesterified fatty acids and leukocyte phospholipid fatty acids. J Dairy Sci 93: 2508-2516. 9. Duffield TF, Lissemore KD, McBride BW, Leslie KE (2009) Impact of hyperketonemia in early lactation dairy cows on health and pro-duction. J Dairy Sci 92: 571-580. 10. Edwards JL, Tozer PR (2004) Using Activity and Milk Yield as Predictors of Fresh Cow Disorders. J Dairy Sci 87: 524-531. 11. Emam MH, Shepley E, Mahmoud MM, Ruch M, Elmaghawry S, Abdelrazik W, Abdelaal AM, Crooker BA, Caixeta LS (2023) The association between prepartum rumination time, activity and dry matter intake and subclinical hypocalcemia and hypomagnesemia in the first 3 days postpartum in Holstein dairy cows. Animals 13:1621 12. Goff JP (2006) Macromineral physiology and application to the feeding of the dairy cow for prevention of milk fever and other peripar-turient mineral disorders. Anim Feed Sci Technol 126: 237-257. 13. Goff JP (2008) The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. Vet J 176: 50-57. 14. Goldhawk C, Chapinal N, Veira DM, Weary DM, von Keyserlingk MA. (2009) Prepartum feeding behavior is an early indicator of sub-clinical ketosis. J Dairy Sci 92: 4971-4977. 15. González LA, Tolkamp BJ, Coffey MP, Ferret A, Kyriazakis I (2008) Changes in feeding behavior as possible indicators for the auto-matic monitoring of health disorders in dairy cows. J Dairy Sci 91: 1017-1028. 16. Grummer RR (1995) Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J Anim Sci 73: 2820-2833. 17. Hammon DS, Evjen IM, Dhiman TR, Goff JP, Walters JL (2006) Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet Immunol Immunopathol 113: 21-29. 18. Hansen LB, Young CW, Miller KP, Touchberry RW (1979) Health Care Requirements of Dairy Cattle. I. Response to Milk Yield Selec-tion. J Dairy Sci 62: 1922-1931. 19. Hayirli A, Grummer RR, Nordheim EV, Crump PM (2002) Animal and dietary factors affecting feed intake during the prefresh transi-tion period in holsteins. J Dairy Sci 85: 3430-3443. 20. Hebbali A (2020) Olsrr: Tools for Building OLS Regression Models, R Package Version 0.5.3.
2. R Foundation for Statistical Compu-ting:Vienna, Austria. 21. Herdt TH (2000) Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver.Vet Clin North Am Food Anim Pract 16: 215-230. 22. Huzzey JM, Veira DM, Weary DM, Von Keyserlingk MA (2007) Prepartum behavior and dry matter intake identify dairy cows at risk for metritis. J Dairy Sci 90: 3220-3233. 23. Kabir M, Hasan MM, Tanni NS, Parvin MS, Asaduzzaman M, Ehsan MA, Islam MT (2022) Metabolic profiling in periparturient dairy cows and its relation with metabolic diseases. BMC Res Notes 15: 231. 24. Kaufman EI, LeBlanc SJ, McBride BW, Duffield TF, DeVries TJ (2016) Association of rumination time with subclinical ketosis in tran-sition dairy cows. J Dairy Sci 99: 5604-5618. 25. LeBlanc SJ, Leslie KE, Duffield TF (2005) Metabolic predictors of displaced abomasum in dairy cattle. J Dairy Sci 88: 159-170. 26. Liboreiro DN, Machado KS, Silva PR, Maturana MM, Nishimura TK, Brandão AP, Endres MI, Chebel RC (2015) Characterization of peripartum rumination and activity of cows diagnosed with metabolic and uterine diseases. J Dairy Sci 98: 6812-6827. 27. McArt JA, Nydam DV, Oetzel GR (2012) Epidemiology of subclinical ketosis in early lactation dairy cattle. J Dairy Sci 95: 5056-5066. 28. Ospina PA, McArt JA, Overton TR, Stokol T, Nydam DV (2013) Using nonesterified fatty acids and beta hydroxybutyrate concentra-tions during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking perfor-mance. Vet Clin North Am Food Anim Pract 29: 387-412. 29. Ospina PA, Nydam DV, Stokol T, Overton TR (2010) Association between the proportion of sampled transition cows with increased nonesterified fatty acids and beta hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. J Dairy Sci 93: 3595-3601. 30. Overton TR (2001) Transition cow programs. The good, the bad, and how to keep them from getting ugly. Adv Dairy Tech 13: 17-26. 31. Paudyal S (2021) Using rumination time to manage health and reproduction in dairy cattle: a review. Vet Q 41: 292-300. 32. Ruoff J, Borchardt S, Heuwieser W (2017) Short communication: Associations between blood glucose concentration, onset of hyper-ketonemia, and milk production in early lactation dairy cows. J Dairy Sci 100: 5462-5467. 33. Schirmann K, Weary DM, Heuwieser W, Chapinal N, Cerri RL, von Keyserlingk MA (2016) Short communication: Rumination and feeding behaviors differ between healthy and sick dairy cows during the transition period. J Dairy Sci 99: 9917-9924. 34. Soriani N, Trevisi E, Calamari L (2012) Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period. J Anim Sci 90: 4544-4554. 35. Stevenson JS, Banuelos S, Mendonça LG. (2020) Transition dairy cow health is associated with first postpartum ovulation risk, meta-bolic status, milk production, rumination, and physical activity. J Dairy Sci 103: 9573-9586. 36. Mepham TB (1993) The development of ideas on the role of glucose in regulating milk secretion. Australian J Agric Res 44: 509-522. 37. van Hoeij RJ, Kok A, Bruckmaier RM, Haskell MJ, Kemp B, van Knegsel AT (2019) Relationship between metabolic status and behav-ior in dairy cows in week 4 of lactation. Animal 13: 640-648. 38. von Keyserlingk MA, Rushen J, de Passillé AM, Weary DM (2009) Invited review: The welfare of dairy cattle - Key concepts and the role of science. J Dairy Sci 92: 4101-4111. 39. Wathes CM, Kristensen HH, Aerts JM, Berckmans D (2008) Is precision livestock farming an engineer's daydream or nightmare, an animal's friend or foe, and a farmer's panacea or pitfall? Comp Electr 64: 2-10. 40. Weary DM, Huzzey JM, Von Keyserlingk MA (2009) Boardinvited review: Using behavior to predict and identify ill health in animals. J Anim Sci 87: 770-777. 41. Weber WJ, Wallaces CR, Hansen LB, Chester-Jones H, Crooker BA (2007) Effects of genetic selection for milk yield on somatotropin, insulin-like growth factor-I, and placental lactogen in Holstein cows. J Dairy Sci 90: 3314-3325. 42. Young CW (1977) Review of Regional Project NC-2. J Dairy Sci 60: 493-498.