Immunohistochemical properties of motoneurons supplying the porcine trapezius muscle

Author:

Dudek A.1,Sienkiewicz W.1,Lepiarczyk E.2,Kaleczyc J.1

Affiliation:

1. Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland

2. Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum,University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082, Olsztyn, Poland

Abstract

The trapezius muscle (TRAP) belongs to the scapulothoracic group of muscles, which play a crucial role in the integrity and strength of the upper limb, trunk, head, and neck movements and, thus, in maintaining balance. Combined retrograde tracing (using fluorescent tracer Fast Blue, FB) and double-labelling immunohistochemistry were applied to investigate the chemical coding of motoneurons projecting to the porcine TRAP. FB-positive (FB+) motoneurons supplying the cervical (c-TRAP) and thoracic part (th-TRAP) of the right (injected with the tracer) TRAP were located within the IX-th Rexed lamina in the ipsilateral ventral horn of the grey matter of the spinal medulla. Immunohistochemistry revealed that nearly all the neurons were cholinergic in nature [choline acetyltransferase (CHAT)- or vesicular acetylcholine transporter (VACHT)-positive]. Many retrogradelly labelled neurons displayed also immunoreactivity to calcitonin gene-related peptide (CGRP; approximately 68% of FB+ neurons). The smaller number of nerve cells (5%, 3%, 2% or 1%, respectively) stained for nitric oxide synthase (n-NOS), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and substance P (SP). The retrogradely labelled neurons were closely apposed by nerve fibres expressing immunoreactivity to CHAT, VACHT, CGRP, SP, DβH, VIP, n-NOS, NPY, GAL, Leu-Enk and Met-Enk. Taking into account the clinical relevance of TRAP, the present results may be useful in designing further research aimed at the management of various dysfunctions of the muscle.

Publisher

Polish Academy of Sciences Chancellery

Reference1 articles.

1. 1. Akamatsu FE, Ayres BR, Saleh SO, Hojaij F, Andrade M, Hsing WT, Jacomo AL (2015) Trigger points: an anatomical substratum. Biomed Res Int 2015: 623287. 2. Arita H, Sakamoto M, Hirokawa Y, Okado N (1993) Serotonin innervation patterns differ among the various medullary motoneuronal groups involved in upper airway control. Exp Brain Res 95: 100-110. 3. Arlotta M, Lovasco G, McLean L (2011) Selective recruitment of the lower fibers of the trapezius muscle. J Electromyogr Kinesiol 21: 403-410. 4. Arluison M, Conrath-Verrier M, Tauc M, Mailly P, De la Manche IS, Cesselin F, Bourgoin S, Hamon M (1983a) Different localizations of Met-enkephalin-like immunoreactivity in rat forebrain and spinal cord using hydrogen peroxide and Triton X-100. Light microscopic study. Brain Res Bull 11: 555-571. 5. Arluison M, Conrath-Verrier M, Tauc M, Mailly P, De la Manche IS, Dietl M, Cesselin F, Bourgoin S, Hamon M (1983b) Met-enkephalin-like immunoreactivity in rat forebrain and spinal cord using hydrogen peroxide and Triton X-100. Ultrastructural study. Brain Res Bull 11: 573-586. 6. Atoji Y, Kusindarta DL, Hamazaki N, Kaneko A (2005) Innervation of the rat trachea by bilateral cholinergic projections from the nucle-us ambiguus and direct motor fibers from the cervical spinal cord: a retrograde and anterograde tracer study. Brain Res 1031: 90-100. 7. Barber RP, Phelps PE, Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1984) The morphology and distribution of neurons con-taining choline acetyltransferase in the adult rat spinal cord: an immunocytochemical study. J Comp Neurol 229: 329-346. 8. Boehm I, Alhindi A, Leite AS, Logie C, Gibbs A, Murray O, Farrukh R, Pirie R, Proudfoot C, Clutton R, Wishart TM, Jones RA, Gillingwater TH (2020) Comparative anatomy of the mammalian neuromuscular junction. J Anat 237: 827-836. 9. Chan PK, Hems TE (2006) Clinical signs of accessory nerve palsy. J Trauma, 60: 1142-1144. 10. Chu J (1995) Dry needling (intramuscular stimulation) in myofascial pain related to lumbosacral radiculopathy. Eur J Phys Rehabil Med 5: 106-121. 11. Chiocchetti R, Grandis A, Bombardi C, Clavenzani P, Spadari A, Gentile A, Bortolami R (2005) Localization, morphology, and im-munohistochemistry of spinal cord and dorsal root ganglion neurons that innervate the gastrocnemius and superficial digital flexor mus-cles in cattle. Am J Vet Res 66: 710-720. 12. Csillik B, Tajti L, Kovacs T, Kukla E, Rakic P, Knyihar-Csillik E (1993) Distribution of calcitonin gene-related peptide in vertebrate neu-romuscular junctions: relationship to the acetylcholine receptor. J Histochem Cytochem 41: 1547-1555. 13. De Meulemeester K, Calders P, De Pauw R, Grymonpon I, Govaerts A, Cagnie B (2017) Morphological and physiological differences in the upper trapezius muscle in patients with work-related trapezius myalgia compared to healthy controls: A systematic review. Muscu-loskelet Sci Pract 29: 43-51. 14. Dudek A, Sienkiewicz W (2009) Immunohistochemical characterisation of the motoneurones supplaying trapezius muscle (musculus trapezius) in the rat. Abstract Book of the 29-th Congress of Polish Anatomical Society, Bydgoszcz, September 3-5, p 23. 15. Dudek A, Sienkiewicz W, Kaleczyc J (2015) Contribution of the dorsal branch of the accessory nerve to the innervation of the trapezius muscle in the pig - a retrograde tracing study. Acta Zoologica 96: 519-529. 16. Dudek A, Sienkiewicz W, Marczak M, Kaleczyc J (2011) Immunohistochemical properties of motoneurons supplying the trapezius mus-cle in the rat. Pol J Vet Sci 14: 199-205. 17. Eberhorn AC, Ardeleanu P, Buttner-Ennever JA, Horn AK (2005) Histochemical differences between motoneurons supplying multiply and singly innervated extraocular muscle fibers. J Comp Neurol 491: 352-366. 18. Eberhorn AC, Buttner-Ennever JA, Horn AK (2006) Identification of motoneurons supplying multiply- or singly-innervated extraocular muscle fibers in the rat. Neuroscience 137: 891-903. 19. Fernandez HL, Chen M, Nadelhaft I, Durr JA (2003) Calcitonin gene-related peptides: their binding sites and receptor accessory proteins in adult mammalian skeletal muscles. Neuroscience 119: 335-345. 20. Gardan D, Gondret F, Louveau I (2006) Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. Am J Physiol Endocrinol Metab 291: 372-380. 21. Grozdanovic Z (2001) NO message from muscle. Microsc Res Tech 55: 148-153. 22. Grozdanovic Z, Baumgarten HG (1999) Nitric oxide synthase in skeletal muscle fibers: a signaling component of the dystro-phin-glycoprotein complex. Histol Histopathol 14: 243-256. 23. Handel SE, Stickland NC (1986) “Giant” muscle fibres in skeletal muscle of normal pigs. J Comp Pathol 96: 447-457. 24. Hietanen M, Pelto-Huikko M, Rechardt L (1990) Immunocytochemical study of the relations of acetylcholinesterase, enkephalin-, sub-stance P-, choline acetyltransferase- and calcitonin gene-related peptide-immunoreactive structures in the ventral horn of rat spinal cord. Histochemistry 93: 473-477. 25. Hisa Y, Tadaki N, Koike S, Bamba H, Uno T (1998) Calcitonin gene-related peptide-like immunoreactive motoneurons innervating the canine intrinsic laryngeal muscles. Ann Otol Rhinol Laryngol 107: 1029-1032. 26. Hisa Y, Tadaki N, Uno T, Okamura H, Taguchi J, Ibata Y (1994) Calcitonin gene-related peptide-like immunoreactive motoneurons in-nervating the canine inferior pharyngeal constrictor muscle. Acta Otolaryngol 114: 560-564. 27. Holtman JR Jr, Norman WP, Skirboll L, Dretchen KL, Cuello C, Visser TJ, Hokfelt T, Gillis RA (1984) Evidence for 5-hydroxytryptamine, substance P, and thyrotropin-releasing hormone in neurons innervating the phrenic motor nucleus. J Neurosci 4: 1064-1071. 28. Homonko DA, Theriault E (2000) Downhill running preferentially increases CGRP in fast glycolytic muscle fibers. J Appl Physiol (1985 ) 89: 1928-1936. 29. Hou N, Du X, Wu S (2022) Advances in pig models of human diseases. Animal Model Exp Med 5: 141-152. 30. Houser CR, Crawford GD, Barber RP, Salvaterra PM, Vaughn JE (1983) Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res 266: 97-119. 31. Iaizzo PA, Lehmann-Horn F (1989) The in vitro determination of susceptibility to malignant hyperthermia. Muscle Nerve 12: 184-190. 32. Ichikawa T, Shimizu T (1998) Organization of choline acetyltransferase-containing structures in the cranial nerve motor nuclei and spinal cord of the monkey. Brain Res 779: 96-103. 33. Jones SW, Parr T, Sensky PL, Scothern GP, Bardsley RG, Buttery PJ (1999) Fibre type-specific expression of p94, a skeletal mus-cle-specific calpain. J Muscle Res Cell Motil 20: 417-424. 34. Lefaucheur L (1990) Changes in muscle fiber populations and muscle enzyme activities in the primiparous lactating sow. Reprod Nutr Dev 30: 523-531. 35. Lu IC, Wang HM, Kuo YW, Shieh CF, Chiang FY, Wu CW, Tsai CJ. (2010) Electromyographic study of differential sensitivity to suc-cinylcholine of the diaphragm, laryngeal and somatic muscles: a swine model. Kaohsiung J Med Sci 26: 640-646. 36. Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C (2021) Importance of the pig as a human biomedical model. Sci Transl Med 13 (621): eabd5758. 37. Maley B, Elde R (1981) Localization of substance P-like immunoreactivity in cell bodies of the feline dorsal vagal nucleus. Neurosci Lett 27: 187-191. 38. Merighi A, Kar S, Gibson SJ, Ghidella S, Gobetto A, Peirone SM, Polak JM (1990) The immunocytochemical distribution of seven peptides in the spinal cord and dorsal root ganglia of horse and pig. Anat Embryol (Berl) 181: 271-280. 39. Neumann DA (2017) Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. 3rd ed., Elsevier, St Louis. 40. Piehl F, Arvidsson U, Hokfelt T, Cullheim S (1993) Calcitonin gene-related peptide-like immunoreactivity in motoneuron pools inner-vating different hind limb muscles in the rat. Exp Brain Res 96: 291-303. 41. Popper P, Micevych PE (1989) Localization of calcitonin gene-related peptide and its receptors in a striated muscle. Brain Res 496: 180-186. 42. Rock E, Kozak-Reiss G. (1987) Effect of halothane on the Ca2+-transport system of surface membranes isolated from normal and ma-lignant hyperthermia pig skeletal muscle. Arch Biochem Biophys 256: 703-707. 43. Rock E, Sidi Mammar M, Thomas MA, Viret J, Vignon X (1990) Halothane-induced functional and structural modifications in sarco-plasmic reticulum membranes from pig skeletal muscle. Biochimie 72: 245-250. 44. Sakanaka M (1992) Development of neuronal elements with substance P-like immunoreactivity in the central nervous system. Ontogeny of transmitters and peptides in the CNS. Handbook of chemical neuroanatomy. Elsevier, Amsterdam-London-New york-Tokyo, pp 197-255. 45. Schiaffino S, Reggiani C. (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91: 1447-1531. 46. Senba E, Shiosaka S, Hara Y, Inagaki S, Sakanaka M, Takatsuki K, Kawai Y, Tohyama M (1982) Ontogeny of the peptidergic system in the rat spinal cord: immunohistochemical analysis. J Comp Neurol 208: 54-66. 47. Sienkiewicz W, Dudek A, Kaleczyc J, Chroszcz A (2010) Immunohistochemical characterization of neurones in the hypoglossal nucleus of the pig. Anat Histol Embryol 39: 152-159. 48. Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49: 344-356. 49. Vazquez C, Anesetti G, Martinez PL (1999) Transient expression of nitric oxide synthase in the hypoglossal nucleus of the rat during early postnatal development. Neurosci Lett 275: 5-8. 50. Villar MJ, Huchet M, Hokfelt T, Changeux JP, Fahrenkrug J, Brown JC (1988) Existence and coexistence of calcitonin gene-related peptide, vasoactive intestinal polypeptide- and somatostatin-like immunoreactivities in spinal cord motoneurons of developing embryos and post-hatch chicks. Neurosci Lett 86: 114-118. 51. Villar MJ, Roa M, Huchet M, Hokfelt T, Changeux JP, Fahrenkrug J, Brown JC, Epstein M, Hersh L (1989) Immunoreactive calcitonin gene-related peptide, vasoactive intestinal polypeptide, and somatostatin in developing chicken spinal cord motoneurons. Eur J Neurosci 1: 269-287. 52. Vizzard MA, Erdman SL, Roppolo JR, Forstermann U, de Groat WC (1994) Differential localization of neuronal nitric oxide synthase immunoreactivity and NADPH-diaphorase activity in the cat spinal cord. Cell Tissue Res 278: 299-309. 53. Wessendorf MW, Elde RP (1985) Characterization of an immunofluorescence technique for the demonstration of coexisting neurotrans-mitters within nerve fibers and terminals. J Histochem Cytochem 33: 984-994. 54. Wiater JM, Bigliani LU (1999) Spinal accessory nerve injury. Clin Orthop Relat Res 368: 5-16.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3