The Effect of Addition Amount of Chromium Iron on the Bonding Strength between Alloy Steel Surfacing Layer and Steel Base Metal

Author:

Huang Fei1

Affiliation:

1. High Speed Railway Comprehensive Technical College, Jilin Railway Technology College, Jilin, 132299, China

Abstract

Fe-C-Cr-Nb alloy steel surfacing layers with different contents of C and Cr were prepared on 45 steel base metal by selfshielded flux-cored wires with distinct amounts of high carbon chromium iron addition and melt arc surfacing. The composition and microstructure changes of the surfacing layer were tested and analyzed. The surfacing test plate was processed into a pulling specimen, and the bonding strength between the surfacing layer and the 45 steel base metal was tested with a self-designed pulling test method. The fracture location of the pulling specimen and fracture characteristics were observed by a metallurgical microscope and a scanning electron microscope. The result shows that with the increase of the amount of high carbon chromium iron added to flux-cored welding wire, the content of C and Cr in the surfacing layer increases, and the NbC hard phase disperses. The microstructure of the steel matrix changes from mixed martensite + residual austenite to high carbon martensite + residual austenite, and then independent austenite appears. The hardness of the surfacing layer first increases and then decreases. The bonding strength between the surfacing alloy and the 45 steel base metal first decreases and then increases, and the fracture location is at the bottom of the surfacing layer or the fusion zone with mostly quasi-cleavage characteristics. When the additional amount of high carbon chromium iron reaches 13%, thee pulling specimen exhibits significant deformation with the highest bonding strength, and the fracture is close to the fusion line, where there are numerous tearing edges and shallow dimples.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3