Non-intrusive method for audio quality assessment of lossy-compressed music recordings using convolutional neural networks

Author:

Kasperuk Aleksandra1,Zieliński Sławomir Krzysztof1

Affiliation:

1. Faculty of Computer Science, Białystok University of Technology, Poland

Abstract

Most of the existing algorithms for the objective audio quality assessment are intrusive, as they require access both to an unimpaired reference recording and an evaluated signal. This feature excludes them from many practical applications. In this paper, we introduce a non-intrusive audio quality assessment method. The proposed method is intended to account for audio artefacts arising from the lossy compression of music signals. During its development, 250 high-quality uncompressed music recordings were collated. They were subsequently processed using the selection of five popular audio codecs, resulting in the repository of 13,000 audio excerpts representing various levels of audio quality. The proposed non-intrusive method was trained with the data obtained employing a well-established intrusive model (ViSQOL v3). Next, the performance of the trained model was evaluated utilizing the quality scores obtained in the subjective listening tests undertaken remotely over the Internet. The listening tests were carried out in compliance with the MUSHRA recommendation (ITU-R BS.1534-3). In this study, the following three convolutional neural networks were compared: (1) a model employing 1D convolutional filters, (2) an Inception-based model, and (3) a VGG-based model. The last-mentioned model outperformed the model employing 1D convolutional filters in terms of predicting the scores from the listening tests, reaching a correlation value of 0.893. The performance of the Inceptionbased model was similar to that of the VGG-based model. Moreover, the VGG-based model outperformed the method employing a stacked gated-recurrent-unit-based deep learning framework, recently introduced by Mumtaz et al. (2022).

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3