EMD-based time-frequency analysis methods of audio signals

Author:

Lewandowski Marcin1,Deng Qizhang2

Affiliation:

1. Warsaw University of Technology

2. University of New South Wales Sydney

Abstract

Using appropriate signal processing tools to analyze time series data accurately is essential for correctly interpreting the underlying processes. Commonly employed methods include kernel-based transforms that utilize base functions and modifications to depict time series data. This paper refers to the analysis of audio data using two such transforms: the Fourier transform and the wavelet transform, both based on assumptions regarding the signal's linearity and stationarity. However, in audio engineering, these assumptions often do not hold as the statistical characteristics of most audio signals vary over time, making them unsuitable for treatment as outputs from a Linear Time-Invariant (LTI) system. Consequently, more recent methods have shifted towards breaking down signals into various modes in an adaptive, data-specific manner, potentially offering benefits over traditional kernel-based methods. Techniques like empirical mode decomposition and Holo-Hilbert Spectral Analysis are examples of this. The effectiveness of these methods was tested through simulations using speech signals for both kernel-based and adaptive decomposition methods, demonstrating that these adaptive methods are effective for analyzing audio data that is both nonstationary and an output of the nonlinear system.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3