Affiliation:
1. Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
Abstract
Infrared detectors are usually characterized by 1/f noise when operating with biasing. This type of noise significantly reduces detection capabilities for low-level and slow signals. There are a few methods to reduce the influence of 1/f noise, like filtering or chopper stabilization with lock-in. Using the first one, a simple 1st-order analog low-pass filter built-in amplifier usually cuts off 1/f noise fluctuations at low frequencies. In comparison, the stabilization technique modulates the signal transposing to a higher frequency with no 1/f noise and then demodulates it back (lock-in amplifiers). However, the flexible tuned device, which can work precisely at low frequencies, is especially desirable in some applications, e.g., optical spectroscopy or interferometry. The paper describes a proof-of-concept of an IR detection module with an adjustable digital filter taking advantage of finite impulse response type. It is based on the high-resolution analog-to-digital converter, field-programmable gate array, and digital-to-analog converter. A microcontroller with an implemented user interface ensures control of such a prepared filtering path. The module is a separate component with the possibility of customization and can be used in experiments or applications in which the reduction of noises and unexpected interferences is needed.
Publisher
Polish Academy of Sciences Chancellery