Sensors on the surface acoustic waves for intelligent systems

Author:

Seneta Mariana

Abstract

The work is aimed at the study of surface processes on the dynamically deformed adsorbed surface of semiconductors, which will be used as a sensitive substrate in radiometric temperature sensors. The choice of semiconductors with a zinc blende structure is explained by the sensitivity of such electronic subsystem to the deformation of the crystal lattice, which can be caused by the self-consistent redistribution of defects, inconsistency of the parameters of the crystal lattice, or external factors, for example, the influence of mechanical or electric fields. Based on established regularities of the influence of the concentration and type of adsorbed atoms on the spectrum of surface electronic states and the distribution of electron density on the dynamically deformed adsorbed surface of a single crystal, the development of a new class of intelligent sensors with increased accuracy of measuring the concentration of adsorbed atoms and temperature on surface acoustic waves is proposed. Such a new approach is based on the self-consistent effect of the deformation of the crystal lattice on the dispersion law and the spectral width of the phonon mode, the electric charge density, and the energy displacement of the edges of the allowed zones. It is calculated the temperature-concentration coefficient of the resonance frequency of the surface acoustic wave and the regularities of its change depending on the concentration of adsorbed atoms are established. The relevance of this research is determined both by the needs of fundamental research and by applied aspects of development, optimization and cost reduction of the process of designing and creating devices, the functioning of which is carried out on surface acoustic waves.

Publisher

Ternopil Ivan Puluj National Technical University

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3