Method of operational life’s increasing of transport’s parts due to usage of coatings based on epoxy matrix modified by maleinic anhydride with improved thermal physical properties

Author:

Zhytnyk Danyl

Abstract

The use of a new method of operational life increase of the transport means parts due to the introduction of polymer-based modified materials has been substantiated in the paper under discussion. It is shown that the use of matrices based on epoxy diane oligomers is quite promising direction in protective coatings formation. Some active additives have been applied to improve the properties of epoxy matrices on preliminary stage of their formation. The use of maleinic anhydride modifier containing active to the interphase interaction functional groups is promising as well. Epoxy diane oligomer has been used as the main component for the matrix in the composite formation. The hardener polyethelenepolyamine has been used to link the epoxy compositions enabling to harden the materials at room temperature. The choice of maleinic anhydride as a modifier to improve thermal-physical properties of the developed materials has been substantiated. It has been found that to form a composite material or a protective coating with improved thermal-physical properties it is necessary to apply maleinic anhydride as a modifier in epoxy matrix in the following ratio: q = 0,5 pts.wt. per q = 100 pts.wt. of epoxy oligomer ЕД-20. In this case the material has been formed where, comparing with nonmodified matrix, the indices of glass transition temperature are being increased from Тс = 327 К tо Тс = 335 К, heat resistance (by Martenson) from Т = 341 К to Т = 362 К, and thermal coefficient of linear expansion in the range of temperatures ∆Т = 303…423 К is being decreased from α = 9,9 ×10-5 К-1 to α = 4,4 ×10-5 К-1. It has been proved that the maleinic anhydride content in the matrix with its small fraction (q = 0,5 pts.wt.) has activated the processes of interphase interaction in epoxy CM structure formation, resulted in the increase of number of both physical and chemical bonds per polymer volume unit. This process will involve the increase of gel fraction degree in CM, and, correspondingly, both the cohesion and thermal-physical properties of modified CM have been improved. The developed material under discussion could be efficiently used as a matrix in formation of protective coatings which are to be operated under high temperatures conditions and dynamic or static loadings.

Publisher

Ternopil Ivan Puluj National Technical University

Reference8 articles.

1. 1. Taher A. A. Fyzyko-khymyya polymerov. M.: Nauchnuy myr, 2007. 573 p.

2. 2. Vilens'kyy V. O., Demchenko V. L., Kercha Yu. Yu., Shut M. I. Doslidzhennya termomekhanichnykh ta teplofizychnykh vlastyvostey nanokompozytiv na osnovi poliepoksydu ta dyspersnykh napovnyuvachiv riznoyi pryrody. Fizyka kondensovanykh vysokomolekulyarnykh system. 2009. Vol. 13. P. 18-23.

3. 3. Kocherhyn Yu. S., Kulyk T. A., Hryhorenko T. Y. Kleevыe kompozytsyy na osnove modyfytsyrovannыkh эpoksydnыkh smol. Plastycheskye massы. 2005. No. 10. P. 9-16.

4. 4. Voronkov A. H., Yartsev V. P. Epoksydnye polymerrastvory dlya remonta y zashchyty stroytel'nykh yzdelyy y konstruktsyy: uchebnoe posobye. Tambov: Yzd-vo Tamb. hos. tekhn. un-ta, 2006. 92 p.

5. 5. Buketov A. V., Nehrutsa R. Yu., Yatsyuk V. M. Vplyv modyfikatora 2,4-dyaminoazobenzol-4'- karbonovoyi kysloty na adheziyni vlastyvosti ta zalyshkovi napruzhennya zakhysnykh polimernykh pokryttiv. Naukovi notatky. Luts'k: LNTU. Vol. 65. 2019. P. 30-38.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3