Thai sentence segmentation using large language models

Author:

,Panitsrisit Narongkorn

Abstract

Thai sentence segmentation has been on the topic of interest among Thai NLP communities. However, not much literature has explored the use of transformer-based large language models to tackle the issue. We conduct three experiments on the LST20 corpus, including (1) fine-tuning WangchanBERTa, a large language model pre-trained on Thai, across different classification tasks, (2) joint learning for clause and sentence segmentation, and (3) cross-lingual transfer using the multilingual model XLM-RoBERTa. Our findings show that WangchanBERTa outperforms other models in Thai sentence segmentation, and fine-tuning it with token and contextual information further improves its performance. However, cross-lingual transfer from English and Chinese to Thai is not effective for this task.

Publisher

Office of Academic Resources, Chulalongkorn University

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scaling Dual Stage Image-Text Retrieval with Multimodal Large Language Models;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. EMS: Efficient and Effective Massively Multilingual Sentence Embedding Learning;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

3. ASAGeR: Automated Short Answer Grading Regressor via Sentence Simplification;2023 IEEE International Conference on Knowledge Graph (ICKG);2023-12-01

4. Uncertainty Estimation for Complex Text Detection in Spanish;2023 IEEE 5th International Conference on BioInspired Processing (BIP);2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3