Evaluating the Accuracy of Remote Dendrometers in Tree Diameter Measurements at Breast Height

Author:

Ucar Zennure1,Değermenci Ahmet Salih2,Zengin Hayati2,Bettinger Pete3

Affiliation:

1. Faculty of Forestry, Department of Forest Engineering, Turkey

2. Duzce University, Faculty of Forestry, Department of Forest Engineering, Turkey

3. University of Georgia, Warnell School of Forestry and Natural Resources, USA

Abstract

An accurate tree diameter (DBH) measurement is a significant component of forest inventory. This study assessed the reliability of remote dendrometers to measure tree DBH. We compared direct caliper measurements (reference measurements) to the remote measurements collected from a laser caliper and a smartphone at 0.5 m, 1 m, and 1.5 m distances from each tree within three forest types (pine, oak, and poplar forests). In general, all remote dendrometers underestimated the mean diameter compared to direct caliper measurements, regardless of forest types and distances. We observed that the mean deviation of direct caliper measurement and smartphone measurement at 1.5 m within a pine forest and oak forest were the lowest (0.3 cm and 0.36 cm, respectively). The deviations between direct caliper measurements and smartphone measurements at a 0.5 m distance, across forest types, were noticeably larger compared to others. An ANOVA test was used to determine whether significant deviations existed between caliper measurements and remote measurements at a specific distance, and among three different forest types. We rejected the null hypothesis, which suggested that there were no statistically significant differences (p<0.05) between tree DBH measurements obtained from the direct caliper measurements and indirect measurements (smartphone and laser caliper) captured at a distance. Then, a post-hoc test was performed to examine which set of estimated deviations was different from the reference data. The results suggested that indirect tree DBH measurements using the smartphone app at 1 m and 1.5 m in certain forest types (pine and oak) were not significantly different from direct tree DBH measurements. Also, our test results mostly indicated no significant difference within each forest, except for measurements using the smartphone app at 0.5 m across all forest types when the smartphone measurements were compared to laser caliper measurements. Although forest characteristics and measurement distance may play an important role in remote tree DBH measurement accuracy, the smartphone app may be used as a practical alternative to direct measurement in measuring the DBH of a tree, which may be a positive development for forestry due to the increased use of smartphones and the availability of a free measure app.

Publisher

Faculty of Forestry, University of Zagreb

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3