A Three-Step Neural Network Artificial Intelligence Modeling Approach for Time, Productivity and Costs Prediction

Author:

Proto Andrea Rosario1,Maesano Mauro2,Zimbalatti Giuseppe1,Scarascia Mugnozza Giuseppe3,Macrì Giorgio1,Antonucci Francesca4,Costa Corrado4,Sperandio Giulio4

Affiliation:

1. Mediterranean University of Reggio Calabria, Department of AGRARIA, Italy

2. National Research Council of Italy, Institute for Agricultural and Forest Systems in the Mediterranean and University of Tuscia, Department of Innovation in Biological, Agro-food and Forest Systems, Italy

3. University of Tuscia, Department of Innovation in Biological, Agro-food and Forest Systems, Italy

4. Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Ingegneria e Trasformazioni agroalimentari, Italy

Abstract

The improvement of harvesting methodologies plays an important role in the optimization of wood production in a context of sustainable forest management. Different harvesting methods can be applied according to forest site-specific condition and the appropriate mechanization level depends on a number of factors. Therefore, efficiency and functionality of wood harvesting operations depend on several factors. The aim of this study is to analyze how the different harvesting processes affect operational costs and labor productivity in typical small-scale Italian harvesting companies. A multiple linear regression model (MLR) and artificial neural network (ANN) have been carried out to predict gross time, productivity and costs estimation in a series of qualitative and quantitative variables. The results have created a correct statistical model able to accurately estimate the technical parameters (work time and productivity) and economic parameters (costs per unit of product and per hectare) useful to the forestry entrepreneur to predict the results of the work in advance, considering only the values detectable of some characteristic elements of the worksite.

Publisher

Faculty of Forestry, University of Zagreb

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3