Effectiveness of Erosion Control Structures in Reducing Soil Loss on Skid Trails

Author:

Solgi Ahmad1,Naghdi Ramin1,Zenner Eric K.2,Keivan Behjou Farshad3,Vatani Leila4

Affiliation:

1. University of Guilan, Faculty of Natural Resources, Department of Forestry, Iran

2. Penn State University, Department of Ecosystem Science and Management, USA

3. University of Mohaghegh Ardabili, Faculty of Agriculture and Natural Resources, Department of Forest Sciences, Iran

4. Tarbiat Modares University, Faculty of Natural Resources and Marine Science, Department of Forest Science and Engineering, Iran

Abstract

Forest operations can lead to increased runoff and soil loss on roads and skid trails. Best management practices (BMPs) aim to minimize erosion and water quality problems, but the efficacies of various BMP options such as water bars are not well documented. The aim of this study was to evaluate the effects of different densities of water diversion structures (water bars) on runoff volume and soil loss on different skid trail gradients on two soils with different textures in the Shenrood forest, Guilan province, northern Iran. The treatments included combinations of four densities of water bars (1, 2, 3 or 6 water bars per 150 m length of skid trail section [overland trail]), on two levels of trail gradient (≤20% and >20%) and two soil textures (clay loam and silt loam). Average runoff volume and soil loss per m2 of skid trail surface area were significantly greater (P≤0.05) on silt loam than on clay loam textured soils, and on slope gradients >20% (23–28%) than on gradients ≤20% (5–13%). Average runoff volume increased, and average soil loss decreased significantly (P≤0.05) with increasing density of water bars on both gradients and on both soil textures. On both soil textures, the lowest surface runoff volumes were observed with one water bar and the greatest volumes with six water bars installed. In contrast, the smallest amount of soil loss on both soil textures was observed with six water bars, and the greatest soil loss when only one water bar was installed. The installation of additional water bars led to significant differences in both responses at each level of density and led to reductions in soil loss of 77%, 57% and 27% in the clay loam, and 79%, 60% and 30% in the silt loam soil compared to the single water bar treatment. The reduced soil loss per unit of surface runoff volume is likely due to the reduced velocity of surface water runoff in the skid trail. The greater density of water bars appears to effectively divert more but slower flowing water from the skid trail, leading to reduced soil loss. While additional water bars thus better meet the objective of BMPs to minimize soil loss, managers need to balance the cost of the construction of additional water bars against the ecological benefits of reduced soil loss. An investment into additional water bars may be worthwhile if the additional structures are able to divert surface runoff more effectively to nearby vegetation and reduce the input of soil from skid trails to streams, thereby preventing the loss of water quality of these streams.

Publisher

Faculty of Forestry, University of Zagreb

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3