Field Setup and Assessment of a Cloud-Data Based Crane Scale (CCS) Considering Weight- and Local Green Wood Density-Related Volume References

Author:

Starke Michael1,Geiger Chris2

Affiliation:

1. Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences HAFL, Switzerland

2. Karlsruher Institut für Technologie (KIT), Institute of Mobile Machines (Mobima), Germany

Abstract

When investigating the forwarding process within the timber supply chain, insufficient data often inhibits long-term studies or make real-time optimisation of the logistics process difficult. Information sources to compensate for this lack of data either depend on other processing steps or they need additional, costly hardware, such as conventional crane scales. An innovative weight-detection concept using information provided by a commonly available hydraulic pressure sensor may make the introduction of a low-cost weight information system possible. In this system, load weight is estimated by an artificial neural network (ANN) based on machine data such as the hydraulic pressure of the inner boom cylinder and the grapple position.In our study, this type of crane scale was set up and tested under real working conditions, implemented as a cloud application. The weight scale ANN algorithm was therefore modified for robustness and executed on data collected with a commonly available telematics module. To evaluate the system, also with regard to larger sample sizes, both direct weight-reference measurements and additional volume-reference measurements were made. For the second, locally valid weight-volume conversion factors for mainly Norway spruce (Picea abies, 906 kg m-3, standard error of means (SEM) of 13.6 kg m-3), including mean density change over the observation time (–0.16% per day), were determined and used as supportive weight-to-volume conversion factor.Although the accuracy of the weight scale was lower than in previous laboratory tests, the system showed acceptable error behaviour for different observation purposes. The twice-observed SEM of 1.5% for the single loading movements (n=95, root-mean-square error (RMSE) of 15.3% for direct weight reference; n=440, RMSE=33.2% for volume reference) enables long-term observations considering the average value, but the high RMSE reveals problems with regard to the single value information.The full forwarder load accuracy, as unit of interest, was observed with an RMSE of 10.6% (n=41), considering a calculated weight-volume conversion as reference value. An SEM of 5.1% for already five observations with direct weight reference provides a good starting point for work-progress observation support.

Publisher

Faculty of Forestry, University of Zagreb

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3