Evaluating the Impact of Meteorological Data Sources on Moisture Prediction Accuracy of Eucalyptus Nitens Log Pile Natural Drying Models

Author:

Strandgard Martin1,Taskhiri Mohammad Sadegh1,Turner Paul1

Affiliation:

1. University of Tasmania, College of Sciences and Engineering, School of Information and Communication Technology

Abstract

Drying forest biomass at roadside can reduce transport costs and greenhouse gas emissions by reducing its weight and increasing its net calorific value. Drying models are required for forest supply chain analysis to determine optimum storage times considering storage costs and returns. The study purpose was to evaluate the impact of the source of meteorological data on the goodness of fit and practical application of Eucalyptus nitens log pile drying models. The study was conducted in Long Reach, NE Tasmania, Australia from the 6th of February to 6th of August 2020. Four data sources were compared: the nearest meteorological station, interpolated meteorological data, a portable weather station, and digital temperature/RH sensors. Predicted moisture content (MC) values from the only previously published E. nitens log pile drying model were also evaluated using the current study data sources as inputs.Log pile MC changes were determined from weight changes measured by placing the study logs on a steel frame bolted to load cells at each corner. As the study was based on debarked logs, dry matter losses were assumed to be negligible. Initial MC of the logs was determined by extracting samples using an electric drill and drying them until constant weight was achieved.Initial log pile drying rates were high with several daily MC losses >2%. Portable weather station data produced the best goodness of fit drying model. The second-best goodness of fit model was based on meteorological station data. From a user acceptability perspective (highest proportion of results within ±5% of measured values), the best model was based on temperature/RH sensor data. Goodness of fit measures for the temperature/RH sensor data model were poorer than for the other data sources, but still acceptable. The published E. nitens log drying model had the poorest results for goodness of fit and user acceptability.In conclusion, portable weather stations are best suited to research trials due to the expense of placing a weather station at each log pile. Drying models based on data from the nearest meteorological station or temperature/RH sensors are best suited for practical applications, such as forest supply chain analysis. Additional benefits could accrue from a forest estate-wide network of low cost temperature/RH sensors potentially supplying data to forest supply chain analysis as well as fire prediction and tree growth models.

Publisher

Faculty of Forestry, University of Zagreb

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3