The Effect of Hot and Cold Check Tests on Surface Roughness and Glossiness in Varnished Wood Material

Author:

Atilgan Abdi1,Dündar Sofuoğlu Sait2

Affiliation:

1. Afyon Kocatepe University, Afyonkarahisar, Turkey

2. Kutahya Dumlupinar University, Kutahya, Turkey

Abstract

In this study, specimens from Scots pine (Pinus sylvestris L.), Anatolian chestnut (Castanea sativa Mill.) and Eastern beech (Fagus orientalis Lipsky) tree species, prepared according to ISO 3129, were conditioned according to TS ISO 13061-1. Cellulosic varnish, water-based varnish, and glass polish varnish were applied to their surfaces in accordance with ASTM-D 3023 principles. In the study, roughness (TS 2495 EN ISO 3274 and TS EN ISO 21920-3) and gloss (according to TS EN ISO 2813) values of the samples were calculated after hot and cold check test. Varnished test specimens prepared in 100 mm × 100 mm ×10 mm dimensions were first kept in drying oven at (50±5) °C for 1 hour, then were kept in conditioning room for 1 hour, and then at (-20±2) °C for 1 hour, according to ASTM D1211-97. These processes were accepted as one cycle, and tests were continued until 15 cycles. Afterward, glossiness was measured as perpendicular and parallel to fibers at 60º with a gloss measurement device, and surface roughness values of Ra and Rz were determined with a surface roughness measuring device. According to the results obtained, Scots pine (Pinus sylvestris L.), Eastern beech (Fagus Orientalis Lipsky), and Anatolian chestnut (Castanea sativa Mill.) varnish-coated wood material surfaces all showed a decrease in gloss values after hot-cold shock effect. While an increase occurred in Rz values of roughness for all wooden surfaces, Ra values roughness increased for Scots pine and chestnut and decreased for eastern beech. Gloss and roughness values of surface-treated wood materials against changing weather conditions can determine usefulness of the surface material used. The findings obtained in this study can be useful to manufacturers who use wooden products in the design of marine vehicles and those who export furniture to countries in different climatic conditions.

Publisher

Faculty of Forestry, University of Zagreb

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3