The Influence of Pulping Process and Energy Consumption on Properties of Nanofibrillated Lignocellulose (NFLC) Films Isolated from Wheat Straw

Author:

Moezzipour Bita1,Hedjazi Sahab2,Yousefi Hossein3,Ahmadi Mohammad1

Affiliation:

1. University of Mohaghegh Ardabili, Faculty of Agriculture and Natural Resources, Natural Resources Department, Ardabil, Iran

2. University of Tehran, Faculty of Natural Resources, Department of Wood Science and Technology, Teheran, Iran

3. Gorgan University of Agricultural Sciences and Natural Resources, Department of Wood Engineering and Technology, Laboratory of Sustainable Nanomaterials, Gorgan, Iran

Abstract

The present research has primarily focused on the production of nanofibrillated lignocellulose (NFLC) instead of nanofibrillated cellulose (NFC), which could be produced with less energy and is expected to have similar uses as NFC, especially in the sectors where the transparency is not important. Furthermore, the effect of energy consumption needed for NFLC production and also the influence of pulping methods on the produced NFLC properties has been surveyed. Through mechanical refining and different passes in microfluidizer, the results showed the average diameter of NFLC declined from around 19000 nm to 36 nm. Soda-NFLC films had higher calliper and lower roughness, compared to those of MEA at given energy consumption in refiner and microfluidizer. For both kinds of pulps, the optimum level of energy consumption to reach the best tensile index of NFLC films was 258 kWh/t, with three passes through microfluidizer. More increase in the number of passes and pressure only resulted in increasing of energy consumption without any positive effect on improving the tensile index. The maximum tensile indices of NFLC films obtained from soda and MEA pulping processes were 113.5 and 119.86 N·m/g, respectively. The burst index of 8.5 kP·m2/g and the energy consumption of 458 kWh/t were obtained for five passes through microfluidizer. With the increase of the number of passes of soda and MEA samples through microfluidizer, the opacity decreased but transparency increased.

Publisher

Faculty of Forestry, University of Zagreb

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3