Characterization of Formaldehyde Emission and Combustion Properties of Peanut (Arachis Hypogaea) Husk-Based Green Composite Panels for Building Applications

Author:

Ercan Ersin1,Atar Musa2,Kucuktuvek Mustafa3,Keskin Hakan2

Affiliation:

1. Turkish Standards Institute, Inspection and Surveillance System Directorate, Ankara, Turkey

2. Gazi University, Faculty of Technology, Department of Wood Products Industrial Engineering, Teknikokullar, Ankara, Turkey

3. Iskenderun Technical University, Faculty of Architecture, Department of Interior Architecture, Iskenderun, Hatay, Turkey

Abstract

The building sectors are increasingly in need of more wood-based panels. Forests and environments are being destroyed to produce these wood-based panels. The aim of this study is to protect forest assets by recycling peanut (Arachis hypogaea) husk and manufacturing particleboard for green building design. The manufactured composite panels were subjected to combustion and formaldehyde tests. According to the test results, peanut husk reduced the combustion time and increased the combustion temperature. Phenol-formaldehyde adhesive decreased illuminance values and the peanut husk ratio increased the illuminance values. It was understood that, when the peanut husk additive ratio increased, combustion times decreased. Slow-combustion of green building composite panels delays the danger of collapse in case of a fire in a building. The combustion performance of the composite panels can be improved by adding non-combustible materials that do not affect the adhesion performance of the composite panels. When the adhesive type is taken into consideration, it is seen that the FF additive ratio reduces the combustion time. According to the formaldehyde emission test results, 24 hours after the manufacturing process all composite panels met the requirements of the board formaldehyde class E1. These composite panels can be used in green buildings as a sustainable building material. The furniture industry can also use these agro-fiber composite panels as green materials.

Publisher

Faculty of Forestry, University of Zagreb

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3