Digital Signature Scheme with Hidden Group Possessing Two-Dimensional Cyclicity

Author:

Moldovyan D.1ORCID,Fahrutdinov R.1,Mirin A.1,Kostina A.1

Affiliation:

1. St. Petersburg Federal Research Center of the Russian Academy of Sciences

Abstract

A method is proposed for constructing digital signature schemes based on the hidden discrete logarithm problem, which meet ageneral criterion of post-quantum resistance. The method provides a relatively small size of the public key and signature. Based on the method, a practical digital signature scheme has been developed, in which the exponentiation operation in a hidden group with two-dimensional cyclicity is the basic cryptographic primitive. The algebraic support of a cryptoscheme is a four-dimensional finite non-commutative algebra with associative multiplication operation. By specifying algebra using abasis vector multiplication table with half of empty cells, the performance of signature generation and authentication procedures is improved. A public key is a triple of four-dimensional vectors calculated as images of elements of a hidden group which are mapped using two types of masking operations: 1) mutually commutative with the exponentiation operation and 2) not having this property.

Publisher

Bonch-Bruevich State University of Telecommunications

Reference17 articles.

1. Ding J., Steinwandt R. Post-Quantum Cryptography. Revised Selected Papers of the 10th International Conference, PQCrypto 2019, Chongqing, China, 8–10 May 2019. Lecture Notes in Computer Science. Security and Cryptology. Springer; 2019. vol.11505. 418 p.

2. Announcing Request for Nominations for Public-Key Post-Quantum Cryptographic Algorithms. Federal Register. 2016;81(244). Available from: https://www.gpo.gov/fdsys/pkg/FR-2016-12-20/pdf/2016-30615.pdf [Accessed 24th May 2021]

3. Moldovyan A.A., Moldovyan D.N. Post-Quantum Digital Signature Protocols Based on the Hidden Discrete Logarithm Problem. Information Security Questions (Voprosy zaŝity informacii). 2019;2(125):23-32.

4. Moldovyan N.A., Moldovyan A.A. Finite Non-commutative Associative Algebras as carriers of Hidden Discrete Logarithm Problem. Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software. 2019;12(1):66–81. DOI:10.14529/mmp190106

5. Молдовян Н.А., Молдовян Д.Н. Постквантовая схема ЭЦП на основе скрытой задачи дискретного логарифмирования в четырехмерной конечной алгебре // Вопросы защиты информации. 2019. № 2. С. 18-22.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3