No-Reference Image Quality Assessment Algorithm

Author:

Gritskevich I.1ORCID,Gogol A.1ORCID

Affiliation:

1. The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Abstract

The presented article focuses on the development of a local image quality assessment algorithm, specifically designed for analyzing contrast and overall visual data quality. The proposed algorithm aims to enhance the efficiency of image assessment, particularly in conditions of low contrast and the presence of various types of noise. The algorithm's methodology takes into account spectral ranges and provides precise local contrast assessment, making it applicable to a broad spectrum of tasks related to image analysis and enhancement. The developed approach has the potential to improve the quality of visual data by supporting crucial aspects of contrast perception and overall image quality.

Publisher

Bonch-Bruevich State University of Telecommunications

Reference14 articles.

1. Gritskevich I.Y., Erganzhiev N.A. The Adaptive Contrast Enhancement Algorithm Based on Local Characteristic of the Scene Image. Proceedings of the Vth International Scientific and Technical Conference on Actual Problems of Radio and Film Technologies, 24−25 November 2020, St. Petersburg, Russia. St. Petersburg: St. Petersburg State Institute of Cinema and Tele-vision; 2021. p.36−40. (in Russ.) EDN:DNBFGB

2. Gonzalez R., Woods R. Digital Image Processing. Moscow: Tekhnosfera Publ.; 2006. 1072 p. (in Russ.)

3. Krasilnikov N.N. Digital Processing of 2D and 3D Images. St. Petersburg: BHV-Petersburg Publ.; 2011. 608 p. (in Russ.)

4. Siforov V.I., Yaroslavsky L.P. Adaptive Methods of Image Processing. Moscow: Nauka Publ.; 1988. 248 p. (in Russ.)

5. Nacharov D.V. Image Contrast Enhancement by Means of Modified S-Shaped Intensity Transrofm. Bulletin of Voronezh State Technical University. 2023;19(2):94–102. (in Russ.) DOI:10.36622/VSTU.2023.19.2.014. EDN:XEUQGW

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3