Affiliation:
1. The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Abstract
Relevance: In the context of the growing fleet of data center equipment, the development of IMT-2020 networks and the imminent emergence of Telepresence services of IMT-2030 networks, a particularly relevant area of modern research is the search for non-trivial, non-standard approaches and solutions in the field of provision of computing and network resources. This article covers current issues in the infrastructure direction of IMT-2030 networks - dynamic fog computing. The contribution of this technology to improve the efficiency of used resources is considered, and current scenarios for IMT-2030 networks are presented. In particular, we study the problem of searching for a group of devices in the computing fog for subsequent migration of typical FaaS platform containers. Problem statement: Research on the joint use of serverless architecture and dynamic fog computing for efficient load distribution of telepresence services. Goal of the work: Research and development of an effective method for distributing a group of microservices in dynamic fog computing. Methods: the algorithms under study belong to the type of metaheuristic algorithms for solving multicriteria optimization problems. To test the method, a laboratory network segment was developed, which served as a generator of real data on the operation of the tested platforms under conditions of increasing load. Based on a series of experiments, data was collected that formed the basis for subsequent modeling of the proposed method, which in turn was implemented in the Python programming language. Result: Analysis of the results showed the effectiveness of the proposed method within the framework of the task, which ultimately makes it possible to make a decision on migration many times faster. Novelty: A model and method for serverless architecture have been developed for migrating groups of microservices to groups of fog computing devices, under conditions of their mobility, and a meta-heuristic algorithm of a pack of gray wolves has been used to determine a group of devices for subsequent migration of typical microservices. Practical significance: The developed model and method can be used in the implementation of fog Computing, in conditions of device mobility, including in order to achieve the requirements of promising Telepresence services.
Publisher
Bonch-Bruevich State University of Telecommunications