Recursive Selection of Hyperexponential Distributions in Approximation of Distributions with "Heavy Tails"

Author:

Buranova M.1ORCID,Kartashevskiy V.1ORCID

Affiliation:

1. Povolzhskiy State University of Telecommunications and Informatics

Abstract

It is known that many quantities that determine the network characteristics of the functioning of an infocommunication network have probability distributions with "heavy tails", which can have a significant impact on network performance. Models with heavy-tailed distributions tend to be difficult to analyze. The analysis can be simplified by using an algorithm to approximate a heavy-tailed distri-bution by a hyperexponential distribution (a finite mixture of exponentials). The paper presents a algorithm for calculating the parameters of the hyperexponential distribution components, which is based on a recursive selection of parameters. This algorithm allows you to analyze various models of queues, including G/G/1. It is shown that the approach under consideration is applicable to the approxi-mation of monotonically decreasing distributions, including those with a "heavy tail". Examples of approximation of Pareto and Weibull distributions are given.

Publisher

Bonch-Bruevich State University of Telecommunications

Reference10 articles.

1. Kleinrock L. Queueing Systems. Vol. 1: Theory. New York: Wiley-Interscience, 1975. 432 p.

2. Sheluhin O.I., Smolsky S.M., Osin A.V. Self-Similarity and Fractals. Telecommunication Applications. Moscow: Fizmatlit Publ.; 2008. 368 p. (in Russ.)

3. Kotz S., Johnson N.L., Read C.B. Encyclopedia of Statistical Sciences. New York: Wiley; 1988. vol.8. p.352‒357.

4. Keilson J., Machihara F. Hyperexponential waiting time structure in hyperexponential H_K/H_L/1 system. Journal of the Operation Research Society of Japan. 1985;28(3):242‒250. DOI:10.15807/jorsj.28.242

5. Feldmann A., Whitt W. Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Performance Evaluation. 1998;31(3–4):245‒279. DOI:10.1016/S0166-5316(97)00003-5

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3