Superposition of the Similarity Images by Contour

Author:

Diyazitdinov R.1ORCID

Affiliation:

1. Povolzhskiy State University of Telecommunications and Informatics

Abstract

Superposition of the similarity images is implemented by the methodology with divided estimation of parameters. The offsets along the coordinate axes are estimated in the Cartesian coordinate system. The scale and the rotate are estimated in the log-polar coordinate system. The accurate estimation of parameters of similarity models (offsets, scale and rotate) is achieved by the iteration processing. Optimization of the processing time is achieved by contour comparison instead of the image comparison. The test data for experiment is image with the freight car. The decreasing of the processing time for the modified methodology of “contour comparison” was estimated by comparison with the source methodology of “image comparison”.

Publisher

Bonch-Bruevich State University of Telecommunications

Reference16 articles.

1. Ke Y., Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors. Computer Vision and Pattern Recognition. 2004;2:506‒513. DOI:10.1109/CVPR.2004.1315206

2. Bay H., Tuytelaars T., Van Gool L. Surf: Speeded up robust features. Proceedings of the 9th European Conference on Computer Vision, ECCV 2006, 7‒13 May 2006, Graz, Austria. Lecture Notes in Computer Science. vol.3951. Berlin, Heidelberg: Springer; 2006. p.404‒417. DOI:10.1007/11744023_32

3. Sungatullina D., Krilov A. A fast algorithm for contours image superposition, which connected by an isotropic affine transformation. GraphiCon. 2014:92‒95. (in Russ.) URL: https://www.graphicon.ru/html/2014/papers/92-95.pdf [Accessed 11th May 2023]

4. Novikov A.I., Sablina V.A., Goryachev E.O. Contour analysis application for image superimposition. Izvestiya TulGU. Technical Sciences. 2013;9-1:260‒270. (in Russ.)

5. Elesina S.I., Efimov A.I. Selection of criterial functions for combined and enhanced synthetic vision systems. Izvestiya TulGU. Technical Sciences. 2013;99-1:229‒236. (in Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3