REVIEW OF 5G NETWORK SERVICES AND THEIR INTEGRATION WITH THE NETWORK DATA ANALYTIC FUNCTION

Author:

Elagin V.1,Vrublevskiy G.1,Mirzoev E.1,Ektova A.1

Affiliation:

1. The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

Abstract

The still widely used 4G networks are not able to adequately meet the constantly emerging new needs of users for mobile services. In their attempts to meet the needs and requests of subscribers, the operators faced a number of problems, namely: the lack of flexibility of communication networks, their complexity, and the increase and constant increase in the cost of operating communication networks. The technology of super-dense 5G networks allows to solve these problems and eliminate shortcomings to some extent, thus becoming a logical development of mobile communication networks. However, 5G, with all its advantages and development prospects, both within the framework of the network architecture and the variety of services provided, faces the problem of a large array of processed data, or rather their analysis – a method of data processing to improve the quality of service of 5G communication networks.

Publisher

Bonch-Bruevich State University of Telecommunications

Reference4 articles.

1. Gordovskij D. E. 5G: kak rabotaet tekhnologiya i zachem ona nuzhna? // Rusbase: sajt. 2019. URL: https://rb.ru/longread/what-is-5G/ (in Russian).

2. Steputin A. N., Nikolaev A. D. Mobile communication on the road to 6G. V 2-h t. MoskvaVologda: Izd-vo «Infra-Inzheneriya», 2017. T. 1. 380 s. ISBN 978-5-9729-0182-1; Т. 2. 416 s. ISBN 978-5-9729-0183-6. (in Russian).

3. Manuel Eugenio Morocho-Cayamcela, Haeyoung Lee and Wansu Lim Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential, Limitations, and Future Directions // IEEE access. Vol. 7. 2019. pp. 137184–137206.

4. Satheesh Marappan NWDAF: Automating the 5G network with machine learning and data analytics // TMForum InForm: сайт. 2020. URL: https://inform.tmforum.org/insights/2020/06/nwdafautomating-the-5g-network-with-machine-learning-and-data-analytics/

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3