Analysis of the call delay time in a PCS switch using OpenFlow technology

Author:

Buranova Marina1,Kartashevskiy Vyacheslav1

Affiliation:

1. Povolzhskiy State University of Telecommunications and Informatics

Abstract

Analysis of the parameters of the functioning of software-defined networks is very relevant. There are many approaches using the methods of queuing theory to evaluate the processing quality parameters in the G/G/1 system. At this stage of development of infocommunication networks, it is required to develop analytical models that allow assessing the parameters of the quality of service for traffic in software-defined networks. In the paper, analytical expressions are obtained that allow estimating the average waiting time for a request in the SDN switch using the mathematical apparatus of the queuing theory based on the analysis of the drive. In this case, random time intervals between incoming requests have a hyperexponential distribution. A queuing system of the H2/G/1/∞ type was used as a model. A mixture of exponential distributions makes it possible to take into account the fractal properties of the sequence of random time intervals between incoming requests, the “heavy tail” of the initial simulated distribution, and the correlation properties of the considered time intervals. The paper compares the results of calculating the waiting time of a claim in the storage for the H2/G/1/∞ system with the result for the G/G/1/∞ system, which is approximated by a queue model of the P/W/1/∞ type, where the average waiting time is estimated applications in the queue were carried out on the basis of solving the Lindley equation by the spectral method. It is shown that the obtained results are consistent.

Publisher

Bonch-Bruevich State University of Telecommunications

Subject

General Medicine

Reference9 articles.

1. Feldmann, A.; Whitt, W. Fitting Mixtures of Exponentials to Long-Tail Distributions to Analyze Network Performance // Models Proceedings of INFOCOM '97. 1997. Vol. 3. pp. 1096‒1104.

2. Whitt, W. On approximations for queues, III: mixtures of exponential distributions // AT&T Bell Laboratories Technical Journal. 1984. Vol. 63. No. 1. pp. 163‒175.

3. Buranova M. A., Kartashevskiy V. G. Determination of the parameters of hyperexponential distribution by the method of recursive selection // Radiolokaciya, navigaciya, svyaz': sbornik trudov XXVII Mezhdunarodnoj nauchno-tekhnicheskoj konferencii, posvyashchennoj 60-letiyu poletov v kosmos YU. A. Gagarina i G. S. Titova, v 4 t., Voronezh, 28–30 sentyabrya 2021 goda. Voronezh: Izdatel'skij dom VGU, 2021. T. 2. S. 43–52 (in Russian).

4. Buranova M., Kartashevskiy I. Application of EM-Algorithm for Approximation of Correlated Traffic Probabilities Density by Hyperexponents. Proceedings of Telecommunication Universities. 2021;7(4):10-17. (In Russ.) https://doi.org/10.31854/1813-324X-2021-7-4-10-17.

5. Tarasov V. N., Kartashevskij I. V. Opredelenie srednego vremeni ozhidaniya trebovanij v upravlyaemoj sisteme massovogo obsluzhivaniya N2/N2/1 // Sistemy upravleniya i informacionnye tekhnologii. 2014. № 3 (57). S. 92‒96 (in Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3