Soluble NKG2D Ligands Are Potential Biomarkers and Sentinels of Immune-Mediated Bone Marrow Injury in Bone Marrow Failure Syndromes

Author:

Murata Shogo,Mushino Toshiki,Hosoi Hiroki,Kuriyama Kodai,Nishikawa Akinori,Nagakura Shoichi,Horikawa Kentaro,Yonemura Yuji,Nakakuma Hideki,Sonoki Takashi,Hanaoka Nobuyoshi

Abstract

Immune-mediated processes are considered important in the pathogenesis of bone marrow failure syndromes (BFS). We previously reported that natural killer group 2D (NKG2D) ligands were expressed on pathological blood cells of patients with BFS and that NKG2D immunity may be involved in bone marrow failure. In addition to membranous NKG2D ligands on the cell surface, soluble NKG2D ligands can exist in plasma. We therefore examined the relationship between soluble NKG2D ligands and blood cell counts in 86 patients with BFS, including aplastic anemia, myelodysplastic syndrome with single lineage dysplasia, and paroxysmal nocturnal hemoglobinuria. Approximately half of the BFS patients were positive for soluble NKG2D ligands in the plasma by enzyme-linked immunosorbent assay, and soluble NKG2D ligand-positive BFS patients exhibited severe cytopenia regardless of membranous NKG2D ligand expression. In vitroanalyses demonstrated that soluble ULBP1, an NKG2D ligand, down-regulated NKG2D receptors on CD2-positive cells in peripheral blood. Moreover, soluble ULBP1 attenuated the cytotoxic effects of peripheral blood mononuclear cells on K562, which express membranous ULBP1. Our results suggest that soluble NKG2D ligands can be easy-to-measure biomarkers for the prediction of activity of immune-meditated bone marrow injury in BFS and that soluble NKG2D ligands suppress redundant immune-mediated bone marrow injury.

Publisher

S. Karger AG

Subject

Hematology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aplastic Anemia as a Roadmap for Bone Marrow Failure: An Overview and a Clinical Workflow;International Journal of Molecular Sciences;2022-10-04

2. Does immune destruction drive all forms of bone marrow failure?;Journal of Clinical Investigation;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3