Ginsenoside Rg1 Protects Cardiomyocytes Against Hypoxia/Reoxygenation Injury via Activation of Nrf2/HO-1 Signaling and Inhibition of JNK

Author:

Li Qianhui,Xiang Yin,Chen Yu,Tang Yong,Zhang Yachen

Abstract

Background/Aims: Excessive reactive oxygen species (ROS) disturb the physiology of H9c2 cells, which is regarded as a major cause of H9c2 cardiomyocyte apoptosis. Ginsenoside Rg1 is the main active extract of ginseng, which has important antioxidant properties in various cell models. This project investigated the role of ginsenoside Rg1 in hypoxia/reoxygenation (H/R)-induced oxidative stress injury in cultured H9c2 cells to reveal the underlying signaling pathways. Methods: H9c2 cells were pretreated with ginsenoside Rg1 for 12 h before exposure to H/R. In the absence or presence of Nrf2siRNA, HO-1 inhibitor (ZnPP-IX), and inhibitors of the MAPK pathway (SB203580, PD98059, SP600125), H9c2 cells were subjected to H/R with Rg1 treatment. The effects and mechanisms of H/R-induced cardiomyocyte injury were measured. Results: Ginsenoside Rg1 treatment suppressed H/R-induced apoptosis and caspase-3 activation. Ginsenoside Rg1 treatment decreased ROS production and mitochondrial membrane depolarization by elevating the intracellular antioxidant capacity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and reduced glutathione (GSH). Furthermore, ginsenoside Rg1 stimulation appeared to result in nuclear translocation of NF-E2-related factor 2 (Nrf2), along with enhanced expression of the downstream target gene heme oxygenase-1 (HO-1) in a dose-dependent manner. However, ginsenoside Rg1-mediated cardioprotection was abolished by Nrf2-siRNA and HO-1 inhibitor. H/R treatment increased the levels of phosphorylated c-Jun N-terminal kinases (p-JNK), which was dramatically attenuated by ginsenoside Rg1 and SP600125 (a specific JNK inhibitor). Conclusion: These observations indicate that ginsenoside Rg1 activates the Nrf2/HO-1 axis and inhibits the JNK pathway in H9c2 cells to protect against oxidative stress.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3