Physiological Signatures of Dual Embryonic Origins in Mouse Skull Vault

Author:

Hu Bo,Wu Taofen,Zhao Yongxu,Xu Guangtao,Shen Ruilin,Chen Guiqian

Abstract

Background/Aims: The mammalian skull vault is a highly regulated structure and consists of several membrane bones of different tissue origins (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). Although membrane bones form through intramembranous ossification, neural crest derived frontal bone has superior osteoblast activity and bone regeneration ability, triggering a novel conception for craniofacial reconstruction and bone regeneration called endogenous calvarial regeneration. However, a comprehensive landscape of the genes and signaling pathways involved in this process is not clear. Methods: Transcriptome analysis within the two bone elements is firstly performed to determine the physiological signatures of differential gene expressions in mouse skull vault. Results: Frontal bone tissues and parietal bone tissues maintain tissue origin through special gene expression similar to neural crest vs mesoderm tissue, and physiological functions between these two tissues are also found in differences related to proliferation, differentiation and extracellular matrix production and clustered signaling pathways. Conclusion: Our data provide novel insights into the potential gene regulatory network in regulating the development of neural crest-derived frontal bone and mesoderm-derived parietal bone.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3