IGF-1 Influences Gonadotropin-Releasing Hormone Regulation of Puberty

Author:

Dees William L.,Hiney Jill K.,Srivastava Vinod K.

Abstract

The pubertal process is initiated as a result of complex neuroendocrine interactions within the preoptic and hypothalamic regions of the brain. These interactions ultimately result in a timely increase in the secretion of gonadotropin-releasing hormone (GnRH). Researchers for years have believed that this increase is due to a diminished inhibitory tone which has applied a prepubertal brake on GnRH secretion, as well as to the gradual development of excitatory inputs driving the increased release of the peptide. Over the years, insulin-like growth factor-1 (IGF-1) has emerged as a prime candidate for playing an important role in the onset of puberty. This review will first present initial research demonstrating that IGF-1 increases in circulation as puberty approaches, is able to induce the release of prepubertal GnRH, and can advance the timing of puberty. More recent findings depict an early action of IGF-1 to activate a pathway that releases the inhibitory brake on prepubertal GnRH secretion provided by dynorphin, as well as demonstrating that IGF-1 can also act later in the process to regulate the synthesis and release of kisspeptin, a potent stimulator of GnRH at puberty.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

Reference96 articles.

1. Faletti AG, Mastronardi CA, Lomniczi A, Seilicovich A, Gimeno M, McCann SM, et al. beta-Endorphin blocks luteinizing hormone-releasing hormone release by inhibiting the nitricoxidergic pathway controlling its release. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1722–6.

2. Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev. 2001 Feb;22(1):111–51.

3. Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci. 2009 Sep 23;29(38):11859–66.

4. Lehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology. 2010 Aug;151(8):3479–89.

5. Sarkar DK, Smith GC, Fink G. Effect of manipulating central catecholamines on puberty and the surge of luteinizing hormone and gonadotropin releasing hormone induced by pregnant mare serum gonadotropin in female rats. Brain Res. 1981 Jun 1;213(2):335–49.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3