Renal Nerve Deafferentation Attenuates the Fall in GFR during Intravenous Infusion of Furosemide in Anesthetized Rats

Author:

Araujo Magali,Solis Glenn,Welch William J.,Wilcox Christopher S.

Abstract

Introduction: Furosemide reduces the glomerular filtration rate (GFR) and increases the renal vascular resistance (RVR) despite inhibiting tubuloglomerular feedback but increases proximal tubule pressure, renin release, and renal nerve activity. Objective: This study tested the hypothesis that the fall in GFR with furosemide is due to volume depletion or activation of angiotensin type 1 (AT1) receptors or renal nerves. Methods: Furosemide was infused for 60 min at 1.0 mg·kg−1·h−1 in groups of 5–8 anesthetized rats. Additional groups received intravenous volume replacement to prevent fluid and Na+ losses or volume replacement plus losartan or plus sham denervation or plus renal denervation or renal nerve deafferentation. Results: At 60 min of infusion, furosemide alone reduced the GFR (–37 ± 4%; p < 0.01). This fall was not prevented by volume replacement or pretreatment with losartan, although losartan moderated the increase in RVR with furosemide (+44 ± 3 vs. +82 ± 7%; p < 0.01). Whereas the GFR fell after furosemide in rats after sham procedure (–31 ± 2%), it was not changed significantly after prior renal deafferentation. Proximal tubule pressure increased significantly but returned towards baseline over 60 min of furosemide, while urine output remained elevated, and GFR and renal blood flow depressed. Conclusions: The fall in GFR over 60 min of furosemide infusion is independent of volume depletion or activation of AT1 receptors but is largely dependent on renal afferent nerves.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Nephrology,Cardiology and Cardiovascular Medicine,Nephrology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Possible positive effect of gum Arabic against the toxicity of the drug furosemide on newborn rats;International Journal of Biology and Chemistry;2023-12

2. Renal denervation: recent developments in clinical and preclinical research;Current Opinion in Nephrology & Hypertension;2023-06-30

3. Etiology and Management of Edema: A Review;Advances in Kidney Disease and Health;2023-03

4. Methods for Assessment of the Glomerular Filtration Rate in Laboratory Animals;Kidney Diseases;2022

5. Renal negative pressure treatment as a novel therapy for heart failure-induced renal dysfunction;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2021-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3