Poly(Lactic-Co-Glycolic Acid) Microparticles for the Delivery of Model Drug Compounds for Applications in Vascular Tissue Engineering

Author:

Wyse Jordyn M.,Sullivan Bryan A.,Lopez Priscilla,Guda Teja,Rathbone Christopher R.,Wechsler Marissa E.

Abstract

<b><i>Introduction:</i></b> Localized delivery of angiogenesis-promoting factors such as small molecules, nucleic acids, peptides, and proteins to promote the repair and regeneration of damaged tissues remains a challenge in vascular tissue engineering. Current delivery methods such as direct administration of therapeutics can fail to maintain the necessary sustained release profile and often rely on supraphysiologic doses to achieve the desired therapeutic effect. By implementing a microparticle delivery system, localized delivery can be coupled with sustained and controlled release to mitigate the risks involved with the high dosages currently required from direct therapeutic administration. <b><i>Methods:</i></b> For this purpose, poly(lactic-co-glycolic acid) (PLGA) microparticles were fabricated via anti-solvent microencapsulation and the loading, release, and delivery of model angiogenic molecules, specifically a small molecule, nucleic acid, and protein, were assessed in vitro using microvascular fragments (MVFs). <b><i>Results:</i></b> The microencapsulation approach utilized enabled rapid spherical particle formation and encapsulation of model drugs of different sizes, all in one method. The addition of a fibrin scaffold, required for the culture of the MVFs, reduced the initial burst of model drugs observed in release profiles from PLGA alone. Lastly, in vitro studies using MVFs demonstrated that higher concentrations of microparticles led to greater co-localization of the model therapeutic (miRNA) with MVFs, which is vital for targeted delivery methods. It was also found that the biodistribution of miRNA using the delivered microparticle system was enhanced compared to direct administration. <b><i>Conclusion:</i></b> Overall, PLGA microparticles, formulated and loaded with model therapeutic compounds in one step, resulted in improved biodistribution in a model of the vasculature leading to a future in translational revascularization.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3