Inhibition of Erythrocyte Cell Membrane Scrambling Following Energy Depletion and Hyperosmotic Shock by Alectinib

Author:

Al Mamun Bhuyan Abdulla ,Lang Florian

Abstract

Background/Aims: The anaplastic lymphoma kinase (ALK) inhibitor alectinib is clinically used for the treatment of ALK positive non-small-cell lung cancer. At least in part the substance is effective by triggering suicidal death or apoptosis of tumor cells. Erythrocytes are lacking mitochondria and nuclei, key organelles of apoptosis but are, similar to apoptosis of nucleated cells, able to enter suicidal erythrocyte death or eryptosis. Stimulators of eryptosis include energy depletion, hyperosmotic shock, oxidative stress, and increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored, whether alectinib influences eryptosis. Methods: Flow cytometry was employed to quantify phosphatidylserine exposure at the cell surface from annexin-V-binding and cell volume from forward scatter. Measurements were made without or with energy depletion (glucose deprivation for 48 hours), hyperosmotic shock (+550mM sucrose for 6 hours), oxidative stress (50 min exposure to 0.3 mM tert-butylhydroperoxide), and Ca2+ loading (60 minutes treatment with 1 µM Ca2+ ionophore ionomycin). Results: A 48 hours exposure of human erythrocytes to alectinib (150-600 ng/ml) did not significantly modify the percentage of annexin-V-binding cells and forward scatter. Energy depletion, hyperosmotic shock, oxidative stress and Ca2+ loading were each followed by profound and significant increase of the percentage annexin-V-binding erythrocytes and a significant decrease of forward scatter. The effects of energy depletion and hyperosmotic shock, but not of oxidative stress or Ca2+ loading on annexin-V-binding were significantly blunted in the presence of alectinib (150-600 ng/ml). In none of the conditions was forward scatter significantly modified by alectinib. Conclusion: Alectinib inhibits cell membrane scrambling following energy depletion and hyperosmotic shock.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3