Angiotensin-Converting Enzyme 2 Inhibits Apoptosis of Pulmonary Endothelial Cells During Acute Lung Injury Through Suppressing SMAD2 Phosphorylation

Author:

Ji Yong,Gao Fengying,Sun Bo,Hao Jing,Liu Zhenwei

Abstract

Background/Aims: Angiotensin converting enzyme 2 (ACE2) has an established role in suppressing the severity of acute lung injury (ALI), especially when it was applied together with transplantation of human umbilical cord mesenchymal stem cells (uMSCs). Although the effects of ACE2 in ALI are believed to mainly result from its role in hydrolyzing angiotensin II (AngII), which subsequently reduces the vascular tension and subsequent pulmonary accumulation of inflammatory cells, we and others have recently reported a possible role of ACE2 in suppressing the ALI-induced apoptosis of pulmonary endothelial cells. However, the underlying mechanisms remain undetermined. Methods: Here, we analyzed the alteration in lung injury severity in ALI after ACE2, by histology and inflammatory cytokine levels. We analyzed apoptosis-associated proteins in lung after ALI, as well as in cultured endothelial cells treated with nitric oxide (NO). We overexpressed SMAD7 to inhibit SMAD2 signaling in cultured endothelial cells and examined its effects on NO-induced cell apoptosis. Results: ACE2 alleviated severity of lung injury after ALI. ACE2 significantly decreased the ALI-induced apoptosis of pulmonary cells in vivo, and ACE2 protected endothelial cells against NO-induced apoptosis in vitro. NO induced phosphorylation of a key factor of transforming growth factor β (TGF β) receptor signaling, SMAD2, which could be dose-dependently inhibited by ACE2. Inhibition of SMAD2 phosphorylation through expression of its inhibitor SMAD7 significantly inhibited NO-induced cell apoptosis, without need for ACE2. Conclusion: Our data suggest that ACE2-mediated AngII degradation may inhibit AngII-mediated SMAD2-phophorylation, possibly through a TGFβ-independent manner, which subsequently suppresses the ALI-induced cell death. Our results thus reveal a novel molecular pathway that controls the pathogenesis of ALI.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3