Association of Predicted Expression and Multimodel Association Analysis of Substance Abuse Traits

Author:

Bost Darius M.,Bizon Chris,Tilson Jeffrey L.,Filer Dayne L.,Gizer Ian R.,Wilhelmsen Kirk C.ORCID

Abstract

<b><i>Introduction:</i></b> Genome-wide association studies (GWAS) have played a critical role in identifying many thousands of loci associated with complex phenotypes and diseases. This has led to several translations of novel disease susceptibility genes into drug targets and care. This however has not been the case for analyses where sample sizes are small, which suffer from multiple comparisons testing. The present study examined the statistical impact of combining a burden test methodology, PrediXcan, with a multimodel meta-analysis, cross phenotype association (CPASSOC). <b><i>Methods:</i></b> The analysis was conducted on 5 addiction traits: family alcoholism, cannabis craving, alcohol, nicotine, and cannabis dependence and 10 brain tissues: anterior cingulate cortex BA24, cerebellar hemisphere, cortex, hippocampus, nucleus accumbens basal ganglia, caudate basal ganglia, cerebellum, frontal cortex BA9, hypothalamus, and putamen basal ganglia. Our sample consisted of 1,640 participants from the University of California, San Francisco (UCSF) Family Alcoholism Study. Genotypes were obtained through low pass whole genome sequencing and the use of Thunder, a linkage disequilibrium variant caller. <b><i>Results:</i></b> The post-PrediXcan, gene-phenotype association without aggregation resulted in 2 significant results, <i>HCG27</i> and <i>SPPL2B</i>. Aggregating across phenotypes resulted no significant findings. Aggregating across tissues resulted in 15 significant and 5 suggestive associations: <i>PPIE, RPL36AL, FOXN2, MTERF4, SEPTIN2, CIAO3, RPL36AL, ZNF304, CCDC66, SSPOP, SLC7A9, LY75, MTRF1L, COA5,</i> and <i>RRP7A</i>; <i>RPS23, GNMT, ERV3-1, APIP</i>, and <i>HLA-B,</i> respectively. <b><i>Discussion:</i></b> Given the relatively small size of the cohort, this multimodel approach was able to find over a dozen significant associations between predicted gene expression and addiction traits. Of our findings, 8 had prior associations with similar phenotypes through investigation of the GWAS Atlas. With the onset of improved transcriptome data, this approach should increase in efficacy.

Publisher

S. Karger AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3