Kabuki Syndrome: Identification of Two Novel Variants in KMT2D and KDM6A

Author:

Khodaeian Mehrnoosh,Jafarinia Ehsan,Bitarafan FatemehORCID,Shafeii Shohreh,Almadani Navid,Daneshmand Mohammad Ali,Garshasbi Masoud

Abstract

Kabuki syndrome (KS) is a rare genetic disorder characterized by the following 5 crucial symptoms: dysmorphic facial features, growth retardation, skeletal abnormalities, intellectual disability, and dermatoglyphic malformations. Studies show that most of the KS cases are caused by mutations or large deletions in the <i>KMT2D</i> gene, while the other cases show mutations in <i>KDM6A</i>. We studied 2 patients with suspected KS in 2 unrelated families by whole-exome sequencing to identify the possible genetic cause(s) and by Sanger sequencing to validate the identified variants and check the segregation in other members of the families. Finally, the potential effects of the variants on the structure and function of respective proteins were tested using in silico predictions. Both affected members of the families showed typical manifestations of KS including intellectual disability, developmental delay, and abnormal facial characteristics. A novel heterozygous frameshift variant in the <i>KMT2D</i> gene, c.4981del; p.(Glu1661Serfs*61), and a novel hemizygote missense variant in the <i>KDM6A</i> gene, c.3301G&#x3e;A; p.(Glu1101Lys), were detected in patients 1 and 2, respectively. The frameshift variant identified in the first family was de novo<i>,</i> while in the second family, the mother was also heterozygous for the missense variant. The frameshift variant in <i>KMT2D</i> is predicted to lead to a truncated protein which is functionally impaired. The Glu1101 residue of KDM6A (UTX) affected in the second patient is located in a conserved region on the surface of the Jumonji domain and predicted to be causative. Our findings provide evidence on the possible pathogenicity of these 2 variants; however, additional functional studies are necessary to confirm their impacts.

Publisher

S. Karger AG

Subject

Genetics(clinical),Genetics

Reference56 articles.

1. Adzhubei I, Jordan DM, Sunyaev SR. Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7(1):Unit7.20.

2. Banka S, Lederer D, Benoit V, Jenkins E, Howard E, Bunstone S, et al. Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked Kabuki syndrome (KS2). Clin Genet. 2015;87(3):252–8.

3. Bava KA, Gromiha MM, Uedaira H, Kitajima K, Sarai A. ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res. 2004;32(Database issue):D120–1.

4. Bögershausen N, Gatinois V, Riehmer V, Kayserili H, Becker J, Thoenes M, et al. Mutation Update for Kabuki Syndrome Genes KMT2D and KDM6A and Further Delineation of X-Linked Kabuki Syndrome Subtype 2. Hum Mutat. 2016;37(9):847–64.

5. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3