Pro-Apoptotic Effects of Plasma from Patients with Cardiorenal Syndrome on Human Tubular Cells

Author:

Virzì Grazia Maria,de Cal Massimo,Day Sonya,Brocca Alessandra,Cruz Dinna N.,Castellani Chiara,Cantaluppi Vincenzo,Bolin Chiara,Fedrigo Marny,Thiene Gaetano,Valente Marialuisa,Angelini Annalisa,Vescovo Giorgio,Ronco Claudio

Abstract

Background: The pathophysiology of Cardiorenal Syndrome Type 1 (CRS1) is widely studied, although the mechanisms by which renal tubular epithelial cells (TECs) cease to proliferate and embark upon terminal differentiation, following the initial insult of heart failure (HF), remain a key target. This study seeks to provide insight into the pathophysiological pathways in CRS1; we evaluated in vitro the effects of CRS1 plasma on TECs. Methods: We enrolled 40 acute HF patients and 15 controls (CTR) without HF or acute kidney injury (AKI). Ten out of 40 HF patients exhibited AKI at the time of admission for HF or developed AKI during hospitalization and were classified as CRS1. In vitro, cell viability, DNA fragmentation and caspase-3 levels were investigated in TECs incubated with HF, CRS1, and CTR plasma. We assessed inflammatory cytokines and NGAL expression at the gene and protein levels. Results: We observed a marked pro-apoptotic activity and a significantly increased in vitro level of apoptosis in TECs incubated with plasma from CRS1 patients compared to HF and CTR (p < 0.01). In the CRS1 group, the mRNA expression of IL-6, IL-18 and NGAL resulted significantly higher in TECs incubated with CRS1 plasma compared with those incubated with plasma from HF and CTR (p < 0.01). IL-6, IL-18, NGAL, and RANTES levels were significantly higher in TECs supernatant incubated with CRS1 plasma compared with HF patients and CTR plasma (p < 0.01). Conclusion: In vitro exposure to plasma from CRS1 patients altered the expression profile of TECs characterized by increases in proinflammatory mediators, release of tubular damage markers, and apoptosis.

Publisher

S. Karger AG

Subject

Nephrology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3