Author:
Virzì Grazia Maria,de Cal Massimo,Day Sonya,Brocca Alessandra,Cruz Dinna N.,Castellani Chiara,Cantaluppi Vincenzo,Bolin Chiara,Fedrigo Marny,Thiene Gaetano,Valente Marialuisa,Angelini Annalisa,Vescovo Giorgio,Ronco Claudio
Abstract
Background: The pathophysiology of Cardiorenal Syndrome Type 1 (CRS1) is widely studied, although the mechanisms by which renal tubular epithelial cells (TECs) cease to proliferate and embark upon terminal differentiation, following the initial insult of heart failure (HF), remain a key target. This study seeks to provide insight into the pathophysiological pathways in CRS1; we evaluated in vitro the effects of CRS1 plasma on TECs. Methods: We enrolled 40 acute HF patients and 15 controls (CTR) without HF or acute kidney injury (AKI). Ten out of 40 HF patients exhibited AKI at the time of admission for HF or developed AKI during hospitalization and were classified as CRS1. In vitro, cell viability, DNA fragmentation and caspase-3 levels were investigated in TECs incubated with HF, CRS1, and CTR plasma. We assessed inflammatory cytokines and NGAL expression at the gene and protein levels. Results: We observed a marked pro-apoptotic activity and a significantly increased in vitro level of apoptosis in TECs incubated with plasma from CRS1 patients compared to HF and CTR (p < 0.01). In the CRS1 group, the mRNA expression of IL-6, IL-18 and NGAL resulted significantly higher in TECs incubated with CRS1 plasma compared with those incubated with plasma from HF and CTR (p < 0.01). IL-6, IL-18, NGAL, and RANTES levels were significantly higher in TECs supernatant incubated with CRS1 plasma compared with HF patients and CTR plasma (p < 0.01). Conclusion: In vitro exposure to plasma from CRS1 patients altered the expression profile of TECs characterized by increases in proinflammatory mediators, release of tubular damage markers, and apoptosis.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献