Ultrastructure of the Dentin Pellicle and the Impact of Erosion

Author:

Schestakow Anton,Bauer Christina,Hannig Matthias

Abstract

While the ultrastructure of the enamel pellicle and its erosion protective properties are well studied, the dentin pellicle is still neglected in dental research. Therefore, the ultrastructure and erosion protective properties of a pellicle formed on bovine dentin specimens were investigated in the present study. The dentin pellicle was formed in situ for 3, 30, 120, and 360 min at buccal or palatal oral sites of 3 subjects and analyzed by transmission electron microscopy. In order to clarify the impact of an erosive challenge to the ultrastructure of the pellicle and the underlying dentin, specimens were exposed to the oral cavity and eroded in vivo with 0.1% or 1% citric acid either immediately or after 30 min of pellicle formation. Specimens that were eroded without exposure to the oral cavity served as control. In another trial, specimens with a 30-min pellicle were exposed to the oral cavity for a further 60 min after the erosive challenge to investigate the effect of saliva on the impaired pellicle and dentin. Transmission electron micrographs reveal a globular and granular structured pellicle layer, which was thicker when the pellicle was formed buccally or with longer formation times. Erosion with citric acid reduced the thickness of the pellicle and interrupted its continuity. The dentin was also affected by erosion, which was represented by a lower electron density and formation of demineralized lacunae. These were infiltrated by a granular structured material when specimens were exposed to the oral cavity. After further intraoral exposure, the infiltration was more pronounced, indicating a significant impact of saliva on the demineralized dentin. A reformation of the dentin pellicle on the other hand did not occur. In conclusion, the dentin pellicle is neither acid-resistant nor able to effectively protect dentin from erosion.

Publisher

S. Karger AG

Subject

General Dentistry

Reference27 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3