Selection of Models: Evolution and the Choice of Species for Translational Research

Author:

Bolker Jessica A.

Abstract

Evolutionary thinking can inform the choice and assessment of model species in neuroscience, particularly when such models are intended to generate knowledge that will translate to humans. Avoiding errors that arise from oversimplified notions of phylogeny or genotype-phenotype mapping is one contribution; evolutionary biology also offers positive guidance. The challenge of finding adequate non-human models for translational research is particularly acute in neuroscience: neurobiological and behavioral phenotypes are complex and plastic, and many traits important in humans are absent, radically different, or difficult to assess in other species. Evolutionary perspectives help to articulate and address these challenges. Darwin’s description of “descent with modification” points to two aspects of evolution that can help us assess the matching between a prospective model species and its intended target. One is trees that represent the structure of phylogenetic relationships; the other is phenotypic traits, i.e. the unique characteristics of each species’ evolved biology and natural history. Mapping traits onto a phylogeny is the first step toward analyzing the source of similarities between a target and a potential model. Whether similar traits arise from shared ancestry or from adaptive convergence has important implications for what kinds of inferences can be justified, and for the likely translatability of findings. Evolution offers both a rich source of possible models, and guidance for choosing the best ones for a given purpose. Considering model choice from an evolutionary angle not only helps to answer the question “What species might be a good model for studying x?” but also suggests additional questions we should be asking to assess the utility of both potential and current models. Recognizing the diverse ways model organisms can function expands our search image as we seek species to study that can both extend general knowledge, and generate translatable insights relevant to human neurobiology and disease.

Publisher

S. Karger AG

Subject

Behavioral Neuroscience,Developmental Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3