Clinical Benefits of Decreased Photo-Oxidative Stress on Human Embryo Development

Author:

Gödöny Krisztina,Herczeg Róbert,Gyenesei Attila,Várnagy Ákos,Bognár Zoltán,Kovács Gábor L.,Szekeres-Barthó Júlia,Mauchart Péter,Nagy Bernadett,Erostyák János,Kovács Kálmán,Bódis József

Abstract

<b><i>Objective:</i></b> Early embryonic development is characterized by rapid cell division and gene activation, making the embryo extremely sensitive to environmental influences. Light exposure can affect embryonic development through a direct toxic effect on the embryo via the generation of reactive oxygen species. In a previous study, we demonstrated the positive effect of improved light-protected embryo culture conditions implemented in our laboratory. This study aimed to investigate the changes in human embryo development under light protection during the conventional in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). <b><i>Materials and Methods:</i></b> We tested the potential beneficial effect of light filters to reduce the risk of toxic effects of light. IVF outcomes were compared between two experimental conditions, light protection with red light filters versus no light protection as a control. <b><i>Results:</i></b> Blastocyst development rate in IVF was significantly higher in the light-protected group than in the group treated under conventional conditions (46.6 vs. 26.7%). In the case of ICSI, we obtained a similar result (44.5 vs. 31.6%). The rate of cryopreservation with at least one embryo was higher in the light-protected phase (32.8%) than in the conventionally manipulated phase (26.8%). The abortion rate was also significantly lower during the light-protected period in IVF, resulting in a higher live birth rate. <b><i>Conclusions:</i></b> The implementation of light protection to reduce the embryotoxic wavelengths of light in IVF centers may improve the blastocyst development rate and embryo quality while maintaining embryo safety.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3