Anti-Proliferative Effects of E2F1 Suppression in Glioblastoma Cells

Author:

Godoy Paulo R.D.V.,Donaires Flavia S.,Montaldi Ana Paula L.,Sakamoto-Hojo Elza T.ORCID

Abstract

Glioblastoma (GBM) is an aggressive malignant brain tumor; surgery, radiation, and temozolomide still remain the main treatments. There is evidence that E2F1 is overexpressed in various types of cancer, including GBM. E2F1 is a transcription factor that controls the cell cycle progression and regulates DNA damage responses and the proliferation of pluripotent and neural stem cells. To test the potentiality of E2F1 as molecular target for GBM treatment, we suppressed the <i>E2F1</i> gene (siRNA) in the U87MG cell line, aiming to inhibit cellular proliferation and modulate the radioresistance of these cells. Following E2F1 suppression, associated or not with gamma-irradiation, several assays (cell proliferation, cell cycle analysis, neurosphere counting, and protein expression) were performed in U87MG cells grown as monolayer or neurospheres. We found that siE2F1-suppressed cells showed reduced cell proliferation and increased cell death (sub-G1 fraction) in monolayer cultures, and also a significant reduction in the number of neurospheres. In addition, in irradiated cells, E2F1 suppression caused similar effects, with reduction of the number of neurospheres and neurosphere cell numbers relative to controls; these results suggest that E2F1 plays a role in the maintenance of GBM stem cells, and our results obtained in neurospheres are relevant within the context of radiation resistance. Furthermore, E2F1 suppression inhibited or delayed GBM cell differentiation by maintaining a reasonable proportion of CD133+ cells when grown at differentiation condition. Therefore, E2F1 proved to be an interesting molecular target for therapeutic intervention in U87MG cells.

Publisher

S. Karger AG

Subject

Genetics (clinical),Genetics,Molecular Biology

Reference55 articles.

1. Afshar G, Jelluma N, Yang X, Basila D, Arvold ND, Karlsson A, et al. Radiation-induced caspase-8 mediates p53-independent apoptosis in glioma cells. Cancer Res. 2006;66:4223–32.

2. Allan K, Jordan RC, Ang LC, Taylor M, Young B. Overexpression of cyclin a and cyclin b1 proteins in astrocytomas. Arch Pathol Lab Med. 2000;124:216–20.

3. Alonso MM, Fueyo J, Shay JW, Aldape KD, Jiang H, Lee OH, et al. Expression of transcription factor E2F1 and telomerase in glioblastomas: Mechanistic linkage and prognostic significance. J Natl Cancer Inst. 2005;97:1589–600.

4. Alonso MM, Alemany R, Fueyo J, Gomez-Manzano C. E2F1 in gliomas: A paradigm of oncogene addiction. Cancer Lett. 2008;263:157–63.

5. Aum DJ, Kim DH, Beaumont TL, Leuthardt EC, Dunn GP, Kim AH. Molecular and cellular heterogeneity: The hallmark of glioblastoma. Neurosurg Focus. 2014;37:E11.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3