Interactions between Diet, Bile Acid Metabolism, Gut Microbiota, and Inflammatory Bowel Diseases

Author:

Devkota Suzanne,Chang Eugene B.

Abstract

The composite human gut microbiomes of Western populations have changed over the past century, brought on by new environmental triggers that often have a negative impact on human health. Diets high in saturated fats and refined sugars and low in fiber are leading candidates for these events and for triggering the increased prevalence of immune-mediated diseases like inflammatory bowel disease (IBD). Our studies have shown that consumption of a ‘Western' diet high in saturated (milk-derived) fat (MF) or n-6 polyunsaturated (safflower oil) fat have similar effects on the structure of the colonic microbiome of wild-type and IL- 10-/- mice, characterized by increased Bacteroidetes and decreased Firmicutes. However, the MF diet uniquely promotes the expansion of an immunogenic sulfite-reducing pathobiont, Bilophila wadsworthia, a member of the Deltaproteobacteria and minor component of the gut microbiome. This bacterial bloom results from a MF diet-induced shift in hepatic conjugation of bile acids, from glycocholic to taurocholic (TC) acid, which is important for solubilizing the more hydrophobic MF diet. However, it is also responsible for delivery of taurine-derived sulfur to the distal bowel, promoting the assemblage of bile-tolerant microbes such as B. wadsworthia. The bloom of this species promotes a Th1-mediated immune response and the development of colitis in IL-10-/- mice. A similar bloom of B. wadsworthia is seen when IL-10-/- mice are fed a low-fat diet supplemented with TC. B. wadsworthia colonization of monoassociated germ-free IL-10-/- mice was dependent on the host consuming either a high-saturated MF diet or the gavage with TC. Together, these data provide a plausible explanation for the link between diseases such as IBD and dietary-mediated selection of gut microbial pathobionts in genetically susceptible hosts. With this knowledge, it may be possible to mitigate the bloom of these types of pathobionts by modifying the conjugation states of bile acids.

Publisher

S. Karger AG

Subject

Gastroenterology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3