Interleukin-27 Ameliorates Renal Ischemia-Reperfusion Injury through Signal Transducers and Activators of Transcription 3 Signaling Pathway

Author:

Zhou Peihui,Deng Bo,Wu Ming,Ding Feng,Wang Li

Abstract

Background: Acute kidney injury (AKI) is a clinical syndrome characterized by significant morbidity and a high death rate. Interleukin (IL)-27 is a newly described member of the IL-6/IL-12 heterodimeric cytokine family and displays anti-inflammatory and antiapoptotic properties. Objectives: To determine the effect and mechanism of IL-27 in AKI. Method: We used a mouse model of renal ischemia/reperfusion (I/R) injury to investigate whether IL-27 has a therapeutic potential for the treatment of AKI. For the IL-27 administration group, IL-27 protein was injected 1 h before ischemia. Human proximal tubular epithelial cells were exposed to ischemia for 2 h and followed by 2 h of reperfusion (I2h+R2h treatment) used as an in vitro model to investigate the effect of IL-27. Results: Two IL-27 subunits, Epstein-Barr virus gene 3 and p28, were upregulated in kidneys 24 h after I/R. Renal expression of IL-27 receptor subunits (gp130 and WSX-1) was also increased. Treatment with IL-27 reduced structural/functional damages, ameliorated renal inflammation, inhibited the cleaved caspase-3 expression, upregulated antiapoptotic protein Bcl-2 and downregulated proapoptotic protein Bax in the kidneys of mice subjected to I/R. Meanwhile, the level of IL-27 receptor on renal tubular epithelial cells was increased after I2h+R2h treatment, and IL-27 administration suppressed I2h+R2h-induced epithelial cell apoptosis. Furthermore, IL-27 treatment led to activation of signal transducer and activator of transcription 3 (STAT3) both in vivo and in vitro, and IL-27-mediated protection against I2h+R2h injury was abolished by STAT3 inhibition. Conclusions: IL-27 protects against renal I/R injury by activating STAT3, suggesting that IL-27 may represent a novel strategy for the treatment of AKI.

Publisher

S. Karger AG

Subject

Cardiology and Cardiovascular Medicine,Nephrology,Cardiology and Cardiovascular Medicine,Nephrology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3