Composition of Urine Collected from Non-Stone-Forming Chinese Persons during Different Short-Term Periods of the Day

Author:

He Zhican,Chang Zhenglin,An Lingyue,Lei Min,Jiang Zheng,Ou Lili,Wu Wenqi,Tiselius Hans-Göran

Abstract

The purpose of this study in a small group of non-stone-forming Chinese persons was to measure the levels of supersaturation with calcium oxalate and calcium phosphate and pH with the aim of confirming if any of the different short-term urine samples were better for risk evaluation than a 24-h sample. Nine normal men and 1 woman collected urine during 4 periods of the day. Period 1 between 08 and 12 h, Period 2 between 12 and 18 h, Period 3 between 18 and 22 h, and Period 4 between 22 and 08 h. Each sample was analysed for calcium, oxalate, citrate, magnesium and phosphate, and estimates of supersaturation with calcium oxalate (CaOx) and calcium phosphate (CaP) were expressed in terms of AP(CaOx) and AP(CaP) index. An estimate of the solute load of CaOx was also calculated. Urine composition for 24-h urine (Period 24) was obtained mathematically from the analysed variables. Urine composition corresponding to 14-h urine portions 22–12 h (Period 14N) and 08–22 h (Period 14 D) were calculated. The lowest pH levels were recorded in Period 1 urine. The highest level of AP(CaOx) index was recorded during Period 1, and the product AP(CaOx) index × 107 × hydrogen ion concentration was significantly higher in Period 1 urine than in 24-h urine (p = 0.02). Also, the product SL(CaOx) × 107 × hydrogen ion concentration was significantly higher in Period 1 urine (p = 0.02). Low AP (CaP) index levels were recorded in Period 4, but also in all periods following dietary loads of calcium and phosphate. With the important reservation that the analytical results were obtained from non-stone-forming persons, the conclusion is that analysis of urine samples collected between 08 and 12 h might be an alternative to 24-h urine. The risk evaluation might advantageously be expressed either in terms of the product AP(CaOx) index × 107 × hydrogen ion concentration or the product SL(CaOx) × 107 × hydrogen ion concentration.

Publisher

S. Karger AG

Subject

Urology

Reference27 articles.

1. Kok DJ. The preventive treatment of recurrent stone-formation: how can we improve compliance in the treatment of patients with recurrent stone disease? Urolithiasis. 2016 Feb;44(1):83–90.

2. Robertson WG. Dietary recommendations and treatment of patients with recurrent idiopathic calcium stone disease. Urolithiasis. 2016 Feb;44(1):9–26.

3. Huang Y, Zhang YH, Chi ZP, Huang R, Huang H, Liu G, et al. The handling of oxalate in the body and the origin of oxalate in calcium oxalate stones. Urol Int. 2020;104(3–4):167–76.

4. Tiselius HG. Metabolic risk-evaluation and prevention of recurrence in stone disease: does it make sense? Urolithiasis. 2016 Feb;44(1):91–100.

5. Tiselius HG, Daudon M, Thomas K, Seitz C. Metabolic work-up of patients with urolithiasis: indications and diagnostic algorithm. Eur Urol Focus. 2017 Feb;3(1):62–71.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3