Beyond the Rainbow: A Review of Advanced Lineage Tracing Methodologies for Interrogating the Initiation, Evolution, and Recurrence of Brain Tumors

Author:

Sabet Sara,Breunig Joshua J.ORCID

Abstract

The mammalian forebrain is perhaps the pinnacle of evolution and one of the most complex structures in known existence. The origin of this complexity and diversity partly lies in dynamic behavior of progenitors during embryonic neural development, all of which is under the control of regulatory mechanisms that ensure all the elements end up in the right place at the right time. Historically, dye-base, histochemical, enzymatic, or fluorescent lineage tracing techniques have been used deconvolute developmental dynamics in tissues and cells. Technical limitations resulted from a restrictive number of fluorophores, the half-life of the dyes, or the ability to deconvolute mixed population. These limitations often impede larger scale lineage tracing using these methods in spatial and temporal contexts. Genetic barcoding techniques have been used for decades to explore clonal investigations and have now evolved with high-throughput sequencing methods to allow for impressive insights into population and even organism-level lineage relationships. In this review, we will discuss the progression of lineage tracing methodologies and how they are applied to answer questions around molecular and cellular mechanisms of gliogenesis and neurogenesis. We will also discuss recent advances in computational biology, single-cell sequencing, and in situ-based lineage tracing methodologies. Incorporation of these methods into toolset of lineage tracing promise to enable a higher resolution, multimodal view of neural lineages during development and disease processes that highjack developmental signaling such as brain tumor development and recurrence – where traditional developmental hierarchies become more plastic and less predictable. Given the dismal prognosis of high-grade brain tumors like glioblastoma multiforme, a better understanding of the lineage relationships leading to disease heterogeneity and recurrence is desperately needed to formulate efficacious approaches to treatment. Here we discuss a historical foundation on, as well as the future of, lineage tracing at the intersection of development and disease.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3