Relationship between Liquid-Based Cytology Preservative Solutions and Artificial Intelligence: Liquid-Based Cytology Specimen Cell Detection Using YOLOv5 Deep Convolutional Neural Network

Author:

Ikeda Katsuhide,Sakabe Nanako,Maruyama Sayumi,Ito Chihiro,Shimoyama Yuka,Sato Shouichi,Nagata Kohzo

Abstract

<b><i>Introduction:</i></b> Deep learning is a subset of machine learning that has contributed to significant changes in feature extraction and image classification and is being actively researched and developed in the field of cytopathology. Liquid-based cytology (LBC) enables standardized cytological preparation and is also applied to artificial intelligence (AI) research, but cytological features differ depending on the LBC preservative solution types. In this study, the relationship between cell detection by AI and the type of preservative solution used was examined. <b><i>Methods:</i></b> The specimens were prepared from five preservative solutions of LBC and stained using the Papanicolaou method. The YOLOv5 deep convolutional neural network algorithm was used to create a deep learning model for each specimen, and a BRCPT model from five specimens was also created. Each model was compared to the specimen types used for detection. <b><i>Results:</i></b> Among the six models, a difference in the detection rate of approximately 25% was observed depending on the detected specimen, and within specimens, a difference in the detection rate of approximately 20% was observed depending on the model. The BRCPT model had little variation in the detection rate depending on the type of the detected specimen. <b><i>Conclusions:</i></b> The same cells were treated with different preservative solutions, the cytologic features were different, and AI clarified the difference in cytologic features depending on the type of solution. The type of preservative solution used for training and detection had an extreme influence on cell detection using AI. Although the accuracy of the deep learning model is important, it is necessary to understand that cell morphology differs depending on the type of preservative solution, which is a factor affecting the detection rate of AI.

Publisher

S. Karger AG

Subject

General Medicine,Histology,Pathology and Forensic Medicine

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3