Echinochrome A Release by Red Spherule Cells Is an Iron-Withholding Strategy of Sea Urchin Innate Immunity

Author:

Coates Christopher J.,McCulloch Claire,Betts Joshua,Whalley Tim

Abstract

Cellular immune defences in sea urchins are shared amongst the coelomocytes - a heterogeneous population of cells residing in the coelomic fluid (blood equivalent) and tissues. The most iconic coelomocyte morphotype is the red spherule cell (or amebocyte), so named due to the abundance of cytoplasmic vesicles containing the naphthoquinone pigment echinochrome A. Despite their identification over a century ago, and evidence of antiseptic properties, little progress has been made in characterising the immunocompetence of these cells. Upon exposure of red spherule cells from sea urchins, i.e., Paracentrotus lividus and Psammechinus miliaris, to microbial ligands, intact microbes, and damage signals, we observed cellular degranulation and increased detection of cell-free echinochrome in the coelomic fluid ex vivo. Treatment of the cells with ionomycin, a calcium-specific ionophore, confirmed that an increase in intracellular levels of Ca2+ is a trigger of echinochrome release. Incubating Gram-positive/negative bacteria as well as yeast with lysates of red spherule cells led to significant reductions in colony-forming units. Such antimicrobial properties were counteracted by the addition of ferric iron (Fe3+), suggesting that echinochrome acts as a primitive iron chelator in echinoid biological defences.

Publisher

S. Karger AG

Subject

Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3