LINC00472 Regulates Ferroptosis of Neurons in Alzheimer’s Disease via FOXO1

Author:

Lin Ping,Wang Jiandong,Li Yuyan,Li Guofeng,Wang Ying

Abstract

<b><i>Introduction:</i></b> The objective of the study was to explore the molecular mechanism of long noncoding RNA (lncRNA) LINC00472 in Alzheimer’s disease (AD) and identify potential novel targets for AD therapy. <b><i>Method:</i></b> Ferroptosis-related lncRNAs were screened by GEO database. AD mouse model was constructed for in vivo experiments. The content of Aβ protein and tau protein hyperphosphorylation were examined in hippocampal tissue samples of mice. Subsequently, HT22 cells were induced with Aβ25–35 to establish a neuronal injury model of AD in vitro. The expression of <i>FOXO1</i>, a key gene for ferroptosis, was verified by overexpressing/knocking down the LINC00472. The effects of LINC00472 on ROS and lipid peroxidation content, GPX4, and tau protein in AD model cells were examined by ROS assay, MDA assay, Western blot, and qRT-PCR. Subsequently, the expression of iron ion, FTH, TfRC, and Fpn protein were detected in AD cells. <b><i>Results:</i></b> The level of <i>FOXO1</i> was positively correlated with the degree of AD. In vivo experiments showed that the expression of Aβ and tau hyperphosphorylated were significantly reduced in the inhibitor group and iron was significantly reduced relative to the AD group. In the AD cell model, the content of lipid peroxide was upregulated, GPX4 protein and mRNA were decreased, and phosphorylation of tau protein was enhanced in the AD cell model relative to the control group. Whereas knocking down LINC00472 inhibited the upregulation of lipid peroxide, decreased the level of GPX4, and enhanced tau protein phosphorylation, and reduced iron accumulation in AD cells. <b><i>Conclusions:</i></b> LINC00472 affects ferroptosis in AD by regulating iron accumulation in neuronal cells.

Publisher

S. Karger AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3