PinX1 Depletion Improves Liver Injury in a Mouse Model of Nonalcoholic Fatty Liver Disease via Increasing Telomerase Activity and Inhibiting Apoptosis

Author:

Huang Erjiong,Xu Ke,Gu Xuemei,Zhu Qihan

Abstract

PIN2/TRF1-interacting telomerase inhibitor 1 (PinX1) can inhibit tumor growth by inhibiting telomerase activity. However, only few studies investigated the expression and function of PinX1 in nonalcoholic fatty liver disease (NAFLD). Thus, here we aimed to explore the roles of PinX1 in high-fat diet (HFD)-induced NAFLD in mice and in isolated hepatocytes. The mRNA expression of PinX1 and mTERT as well as telomere length were analyzed by RT-PCR. Pathological changes were detected by HE staining and oil red O staining. Triglyceride, cholesterol, alanine aminotransferase, aspartic aminotransferase, and telomerase activity were detected by ELISA. Hepatocyte apoptosis was determined by TUNEL and flow cytometry, and protein expression was analyzed by western blotting. We found that the expression of PinX1 was upregulated in the HFD group compared with the WT group. <i>PinX1</i> knockout improved HFD-induced liver injury in mice and exhibited less lipid accumulation in hepatocytes. Moreover, telomere length, telomerase activity, and mTERT expression were significantly reduced in liver tissues of HFD-induced mice and palmitic acid-induced hepatocytes, while <i>PinX1</i> knockout attenuated the effect. Furthermore, HFD-induced <i>PinX1</i><sup>−/−</sup> mice exhibited less hepatocyte apoptosis than HFD-induced WT mice. Besides, <i>PinX1</i> knockout inhibited the increase of cleaved caspase-3 and cleaved PARP expression in vivo and in vitro. Moreover, inhibition of mTERT reversed the effect of <i>PinX1</i> knockout in hepatocytes. Taken together, our findings indicate that PinX1 promotes hepatocyte apoptosis and lipid accumulation by decreasing telomere length and telomerase activity in the development of NAFLD. PinX1 might be a target for the treatment of NAFLD.

Publisher

S. Karger AG

Subject

Genetics (clinical),Genetics,Molecular Biology

Reference43 articles.

1. Aravinthan A, Scarpini C, Tachtatzis P, Verma S, Penrhyn-Lowe S, Harvey R, et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol. 2013;58:549–56.

2. Arndt GM, MacKenzie KL. New prospects for targeting telomerase beyond the telomere. Nat Rev Cancer. 2016;16:508–24.

3. Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2019;76:99–128.

4. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6:611–22.

5. Carulli L. Telomere shortening as genetic risk factor of liver cirrhosis. World J Gastroenterol. 2015;21:379–83.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3